

django-analytical

The django-analytical application integrates analytics services into a
Django [https://www.djangoproject.com/] project.

	Package

	https://pypi.python.org/pypi/django-analytical/

	Source

	https://github.com/jazzband/django-analytical

Overview

Using an analytics service with a Django project means adding Javascript
tracking code to the project templates. Of course, every service has
its own specific installation instructions. Furthermore, you need to
include your unique identifiers, which then end up in the templates.
Not very nice.

This application hides the details of the different analytics services
behind a generic interface, and keeps personal information and
configuration out of the templates. Its goal is to make the basic
set-up very simple, while allowing advanced users to customize tracking.
Each service is set up as recommended by the services themselves, using
an asynchronous version of the Javascript code if possible.

To get a feel of how django-analytical works, check out the
Tutorial.

Contents

	Tutorial
	Setting up basic tracking

	Identifying authenticated users

	Adding custom tracking data

	Installation and configuration
	Installing the Python package

	Installing the Django application

	Adding the template tags to the base template

	Enabling the services

	Features and customization
	Internal IP addresses

	Identifying authenticated users

	Services
	Chartbeat – traffic analysis

	Clickmap – visual click tracking

	Clicky – traffic analysis

	Crazy Egg – visual click tracking

	Facebook Pixel – advertising analytics

	Gaug.es – Real-time tracking

	Google Analytics (legacy) – traffic analysis

	Google Analytics (gtag.js) – traffic analysis

	Google Analytics (analytics.js) – traffic analysis

	GoSquared – traffic monitoring

	Heap – analytics and events tracking

	Hotjar – analytics and user feedback

	HubSpot – inbound marketing

	Intercom.io – Real-time tracking

	KISSinsights – feedback surveys

	KISSmetrics – funnel analysis

	Lucky Orange – All-in-one conversion optimization

	Matomo (formerly Piwik) – open source web analytics

	Mixpanel – event tracking

	Olark – visitor chat

	Optimizely – A/B testing

	Performable – web analytics and landing pages

	Piwik (deprecated) – open source web analytics

	Rating@Mail.ru – traffic analysis

	SnapEngage – live chat

	Spring Metrics – conversion tracking

	UserVoice – user feedback and helpdesk

	Woopra – website analytics

	Yandex.Metrica – traffic analysis

	Settings

	History and credits
	Changelog

	Credits

	Helping out

	License
	License terms

Tutorial

This tutorial will show you how to install and configure
django-analytical for basic tracking, and then briefly touch on two
common customization issues: visitor identification and custom data
tracking.

Suppose your Django website provides information about the IPv4 to IPv6
transition. Visitors can discuss their problems and help each other
make the necessary changes to their network infrastructure. You want to
use two different analytics services:

	Clicky for detailed traffic analysis

	Crazy Egg to see where visitors click on
your pages

At the end of this tutorial, the project will track visitors on both
Clicky and Crazy Egg, identify authenticated users and add extra
tracking data to segment mouse clicks on Crazy Egg based on whether
visitors are using IPv4 or IPv6.

Setting up basic tracking

To get started with django-analytical, the package must first be
installed. You can download and install the latest stable package from
the Python Package Index automatically by using easy_install:

$ easy_install django-analytical

For more ways to install django-analytical, see
Installing the Python package.

After you install django-analytical, you need to add it to the list of
installed applications in the settings.py file of your project:

INSTALLED_APPS = [
 ...
 'analytical',
 ...
]

Then you have to add the general-purpose django-analytical template tags
to your base template:

{% load analytical %}
<!DOCTYPE ... >
<html>
 <head>
 {% analytical_head_top %}

 ...

 {% analytical_head_bottom %}
 </head>
 <body>
 {% analytical_body_top %}

 ...

 {% analytical_body_bottom %}
 </body>
</html>

Finally, you need to configure the Clicky Site ID and the Crazy Egg
account number. Add the following to your project settings.py
file (replacing the x’s with your own codes):

CLICKY_SITE_ID = 'xxxxxxxx'
CRAZY_EGG_ACCOUNT_NUMBER = 'xxxxxxxx'

The analytics services are now installed. If you run Django with these
changes, both Clicky and Crazy Egg will be tracking your visitors.

Identifying authenticated users

Suppose that when your visitors post questions on IPv6 or tell others
about their experience with the transition, they first log in through
the standard Django authentication system. Clicky can identify and
track individual visitors and you want to use this feature.

If django-analytical template tags detect that the current user is
authenticated, they will automatically include code to send the username
to services that support this feature. This only works if the template
context has the current user in the user or request.user context
variable. If you use a RequestContext to
render templates (which is recommended anyway) and have the
django.contrib.auth.context_processors.auth context processor
in the TEMPLATE_CONTEXT_PROCESSORS setting (which is default),
then this identification works without having to make any changes.

For more detailed information on automatic identification, and how to
disable or override it, see Identifying authenticated users.

Adding custom tracking data

Suppose that you think that visitors who already have IPv6 use the
website in a different way from those still on IPv4. You want to test
this hypothesis by segmenting the Crazy Egg heatmaps based on the IP
protocol version.

In order to filter on protocol version in Crazy Egg, you need to
include the visitor IP protocol version in the Crazy Egg tracking code.
The easiest way to do this is by using a context processor:

def track_ip_proto(request):
 addr = request.META.get('HTTP_X_FORWARDED_FOR', '')
 if not addr:
 addr = request.META.get('REMOTE_ADDR', '')
 if ':' in addr:
 proto = 'ipv6'
 else:
 proto = 'ipv4' # assume IPv4 if no information
 return {'crazy_egg_var1': proto}

Use a RequestContext when rendering templates
and add the 'track_ip_proto' to TEMPLATE_CONTEXT_PROCESSORS.
In Crazy Egg, you can now select User Var1 in the overlay or confetti
views to see whether visitors using IPv4 behave differently from those
using IPv6.

This concludes the tutorial. For information about setting up,
configuring and customizing the different analytics services, see
Features and customization and Services.

Installation and configuration

Integration of your analytics service is very simple. There are four
steps: installing the package, adding it to the list of installed Django
applications, adding the template tags to your base template, and
configuring the services you use in the project settings.

	Installing the Python package

	Installing the Django application

	Adding the template tags to the base template

	Enabling the services

Installing the Python package

To install django-analytical the analytical package must be added to
the Python path. You can install it directly from PyPI using
easy_install:

$ easy_install django-analytical

You can also install directly from source. Download either the latest
stable version from PyPI [http://pypi.python.org/pypi/django-analytical/] or any release from GitHub [http://github.com/jazzband/django-analytical], or use Git to
get the development code:

$ git clone https://github.com/jazzband/django-analytical.git

Then install the package by running the setup script:

$ cd django-analytical
$ python setup.py install

Installing the Django application

After you installed django-analytical, add the analytical Django
application to the list of installed applications in the settings.py
file of your project:

INSTALLED_APPS = [
 ...
 'analytical',
 ...
]

Adding the template tags to the base template

Because every analytics service uses own specific Javascript code that
should be added to the top or bottom of either the head or body of the
HTML page, django-analytical provides four general-purpose template tags
that will render the code needed for the services you are using. Your
base template should look like this:

{% load analytical %}
<!DOCTYPE ... >
<html>
 <head>
 {% analytical_head_top %}

 ...

 {% analytical_head_bottom %}
 </head>
 <body>
 {% analytical_body_top %}

 ...

 {% analytical_body_bottom %}
 </body>
</html>

Instead of using the generic tags, you can also just use tags specific
for the analytics service(s) you are using. See Services for
documentation on using individual services.

Enabling the services

Without configuration, the template tags all render the empty string.
Services are configured in the project settings.py file. The
settings required to enable each service are listed here:

	Chartbeat:

CHARTBEAT_USER_ID = '12345'

	Clickmap:

CLICKMAP_TRACKER_CODE = '12345678....912'

	Clicky:

CLICKY_SITE_ID = '12345678'

	Crazy Egg:

CRAZY_EGG_ACCOUNT_NUMBER = '12345678'

	Facebook Pixel:

FACEBOOK_PIXEL_ID = '1234567890'

	Gaug.es:

GAUGES_SITE_ID = '0123456789abcdef0123456789abcdef'

	Google Analytics (legacy):

GOOGLE_ANALYTICS_PROPERTY_ID = 'UA-1234567-8'

	Google Analytics (gtag.js):

GOOGLE_ANALYTICS_GTAG_PROPERTY_ID = 'UA-1234567-8'

	Google Analytics (analytics.js):

GOOGLE_ANALYTICS_JS_PROPERTY_ID = 'UA-12345678-9'

	HubSpot:

HUBSPOT_PORTAL_ID = '1234'
HUBSPOT_DOMAIN = 'somedomain.web101.hubspot.com'

	Intercom:

INTERCOM_APP_ID = '0123456789abcdef0123456789abcdef01234567'

	KISSinsights:

KISS_INSIGHTS_ACCOUNT_NUMBER = '12345'
KISS_INSIGHTS_SITE_CODE = 'abc'

	KISSmetrics:

KISS_METRICS_API_KEY = '0123456789abcdef0123456789abcdef01234567'

	Lucky Orange:

LUCKYORANGE_SITE_ID = '123456'

	Matomo (formerly Piwik):

MATOMO_DOMAIN_PATH = 'your.matomo.server/optional/path'
MATOMO_SITE_ID = '123'

	Mixpanel:

MIXPANEL_API_TOKEN = '0123456789abcdef0123456789abcdef'

	Olark:

OLARK_SITE_ID = '1234-567-89-0123'

	Optimizely:

OPTIMIZELY_ACCOUNT_NUMBER = '1234567'

	Performable:

PERFORMABLE_API_KEY = '123abc'

	Piwik (deprecated, see Matomo):

PIWIK_DOMAIN_PATH = 'your.piwik.server/optional/path'
PIWIK_SITE_ID = '123'

	Rating@Mail.ru:

RATING_MAILRU_COUNTER_ID = '1234567'

	SnapEngage:

SNAPENGAGE_WIDGET_ID = 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'

	Woopra:

WOOPRA_DOMAIN = 'abcde.com'

	Yandex.Metrica:

YANDEX_METRICA_COUNTER_ID = '12345678'

The django-analytical application is now set-up to track visitors. For
information about identifying users, further configuration and
customization, see Features and customization.

Features and customization

The django-analytical application sets up basic tracking without any
further configuration. This page describes extra features and ways in
which behavior can be customized.

Internal IP addresses

Visits by the website developers or internal users are usually not
interesting. The django-analytical will comment out the service
initialization code if the client IP address is detected as one from the
ANALYTICAL_INTERNAL_IPS setting. The default value for this
setting is INTERNAL_IPS.

Example:

ANALYTICAL_INTERNAL_IPS = ['192.168.1.45', '192.168.1.57']

Note

The template tags can only access the visitor IP address if the
HTTP request is present in the template context as the
request variable. For this reason, the
ANALYTICAL_INTERNAL_IPS setting only works if you add this
variable to the context yourself when you render the template, or
you use the RequestContext and add
'django.core.context_processors.request' to the list of
context processors in the TEMPLATE_CONTEXT_PROCESSORS
setting.

Identifying authenticated users

Some analytics services can track individual users. If the visitor is
logged in through the standard Django authentication system and the
current user is accessible in the template context, the username can be
passed to the analytics services that support identifying users. This
feature is configured by the ANALYTICAL_AUTO_IDENTIFY setting
and is enabled by default. To disable:

ANALYTICAL_AUTO_IDENTIFY = False

Note

The template tags can only access the visitor username if the
Django user is present in the template context either as the
user variable, or as an attribute on the HTTP request in the
request variable. Use a
RequestContext to render your
templates and add
'django.contrib.auth.context_processors.auth' or
'django.core.context_processors.request' to the list of
context processors in the TEMPLATE_CONTEXT_PROCESSORS
setting. (The first of these is added by default.)
Alternatively, add one of the variables to the context yourself
when you render the template.

Services

This section describes what features are supported by the different
analytics services. To start using a service, you can either use the
generic installation instructions (see Installation and configuration), or add
service-specific tags to your templates.

If you would like to have another analytics service supported by
django-analytical, please create an issue on the project
issue tracker [http://github.com/jazzband/django-analytical/issues]. See also Helping out.

Currently supported services:

	Chartbeat – traffic analysis

	Clickmap – visual click tracking

	Clicky – traffic analysis

	Crazy Egg – visual click tracking

	Facebook Pixel – advertising analytics

	Gaug.es – Real-time tracking

	Google Analytics (legacy) – traffic analysis

	Google Analytics (gtag.js) – traffic analysis

	Google Analytics (analytics.js) – traffic analysis

	GoSquared – traffic monitoring

	Heap – analytics and events tracking

	Hotjar – analytics and user feedback

	HubSpot – inbound marketing

	Intercom.io – Real-time tracking

	KISSinsights – feedback surveys

	KISSmetrics – funnel analysis

	Lucky Orange – All-in-one conversion optimization

	Matomo (formerly Piwik) – open source web analytics

	Mixpanel – event tracking

	Olark – visitor chat

	Optimizely – A/B testing

	Performable – web analytics and landing pages

	Piwik (deprecated) – open source web analytics

	Rating@Mail.ru – traffic analysis

	SnapEngage – live chat

	Spring Metrics – conversion tracking

	UserVoice – user feedback and helpdesk

	Woopra – website analytics

	Yandex.Metrica – traffic analysis

Chartbeat – traffic analysis

Chartbeat [http://www.chartbeat.com/] provides real-time analytics to websites and blogs. It shows
visitors, load times, and referring sites on a minute-by-minute basis.
The service also provides alerts the second your website crashes or
slows to a crawl.

Installation

To start using the Chartbeat integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Chartbeat template tags to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Chartbeat tracking code is inserted into templates using template
tags. At the top of the template, load the chartbeat template
tag library. Then insert the chartbeat_top tag at the top of
the head section, and the chartbeat_bottom tag at the bottom of
the body section:

{% load chartbeat %}
<html>
<head>
{% chartbeat_top %}

...

{% chartbeat_bottom %}
</body>
</html>

Because these tags are used to measure page loading time, it is
important to place them as close as possible to the start and end of the
document.

Configuration

Before you can use the Chartbeat integration, you must first set your
User ID.

Setting the User ID

Your Chartbeat account has a unique User ID. You can find your User ID
by visiting the Chartbeat Add New Site [http://chartbeat.com/code/] page. The second code snippet
contains a line that looks like this:

var _sf_async_config={uid:XXXXX,domain:"YYYYYYYYYY"};

Here, XXXXX is your User ID. Set CHARTBEAT_USER_ID in the
project settings.py file:

CHARTBEAT_USER_ID = 'XXXXX'

If you do not set a User ID, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the CHARTBEAT_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Setting the domain

The Javascript tracking code can send the website domain to Chartbeat.
If you use multiple subdomains this enables you to treat them as one
website in Chartbeat. If your project uses the sites framework, the
domain name of the current Site
will be passed to Chartbeat automatically. You can modify this behavior
using the CHARTBEAT_AUTO_DOMAIN setting:

CHARTBEAT_AUTO_DOMAIN = False

Alternatively, you set the domain through the chartbeat_domain
context variable when you render the template:

context = RequestContext({'chartbeat_domain': 'example.com'})
return some_template.render(context)

It is annoying to do this for every view, so you may want to set it in
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def chartbeat(request):
 return {'chartbeat_domain': 'example.com'}

The context domain overrides the domain from the current site. If no
domain is set, either explicitly or implicitly through the sites
framework, then no domain is sent, and Chartbeat will detect the domain
name from the URL. If your website uses just one domain, this will work
just fine.

Thanks go to Chartbeat for their support with the development of this
application.

Clickmap – visual click tracking

Clickmap [http://www.getclickmap.com/] is a real-time heatmap tool to track mouse clicks and scroll paths of your website visitors. Gain intelligence about what’s hot and what’s not, and optimize your conversion with Clickmap.

Installation

To start using the Clickmap integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Clickmap template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Clickmap Javascript code is inserted into templates using a template
tag. Load the clickmap template tag library and insert the
clickmap tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body:

{% load clickmap %}
...
{% clickmap %}
</body>
</html>

Configuration

Before you can use the Clickmap integration, you must first set your
Clickmap Tracker ID. If you don’t have a Clickmap account yet,
sign up [http://www.getclickmap.com/] to get your Tracker ID.

Setting the Tracker ID

Clickmap gives you a unique Tracker ID, and the clickmap
tag will include it in the rendered Javascript code. You can find your
Tracker ID clicking the link named “Tracker” in the dashboard
of your Clickmap account. Set CLICKMAP_TRACKER_ID in the project
settings.py file:

CLICKMAP_TRACKER_ID = 'XXXXXXXX'

If you do not set an Tracker ID, the tracking code will not be
rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the ANALYTICAL_INTERNAL_IPS setting
(which is INTERNAL_IPS by default,) the tracking code is
commented out. See Identifying authenticated users for important information
about detecting the visitor IP address.

Clicky – traffic analysis

Clicky [http://getclicky.com/] is an online web analytics tool. It is similar to Google
Analytics in that it provides statistics on who is visiting your website
and what they are doing. Clicky provides its data in real time and is
designed to be very easy to use.

Installation

To start using the Clicky integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Clicky template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Clicky tracking code is inserted into templates using a template
tag. Load the clicky template tag library and insert the
clicky tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body:

{% load clicky %}
...
{% clicky %}
</body>
</html>

Configuration

Before you can use the Clicky integration, you must first set your
website Site ID. You can also customize the data that Clicky tracks.

Setting the Site ID

Every website you track with Clicky gets its own Site ID, and the
clicky tag will include it in the rendered Javascript code.
You can find the Site ID in the Info tab of the website Preferences
page, in your Clicky account. Set CLICKY_SITE_ID in the
project settings.py file:

CLICKY_SITE_ID = 'XXXXXXXX'

If you do not set a Site ID, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the CLICKY_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Custom data

As described in the Clicky customized tracking [http://getclicky.com/help/customization] documentation page,
the data that is tracked by Clicky can be customized by setting the
clicky_custom Javascript variable before loading the tracking
code. Using template context variables, you can let the clicky
tag pass custom data to Clicky automatically. You can set the context
variables in your view when you render a template containing the
tracking code:

context = RequestContext({'clicky_title': 'A better page title'})
return some_template.render(context)

It is annoying to do this for every view, so you may want to set custom
properties in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def clicky_global_properties(request):
 return {'clicky_timeout': 10}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Here is a table with the most important variables. All variables listed
on the customized tracking [http://getclicky.com/help/customization] documentation page can be set by replacing
clicky_custom. with clicky_.

	Context variable

	Clicky property

	Description

	clicky_session

	session [http://getclicky.com/help/customization#session]

	Session data. A dictionary
containing username and/or
group keys.

	clicky_goal

	goal [http://getclicky.com/help/customization#goal]

	A succeeded goal. A dictionary
containing id and optionally
revenue keys.

	clicky_split

	split [http://getclicky.com/help/customization#split]

	Split testing page version. A
dictionary containing name,
version and optionally goal
keys.

	clicky_href

	href [http://getclicky.com/help/customization#href]

	The URL as tracked by Clicky.
Default is the page URL.

	clicky_title

	title [http://getclicky.com/help/customization#title]

	The page title as tracked by
Clicky. Default is the HTML title.

Identifying authenticated users

If you have not set the session [http://getclicky.com/help/customization#session] property explicitly, the username of an
authenticated user is passed to Clicky automatically. See
Identifying authenticated users.

Thanks go to Clicky for their support with the development of this
application.

Crazy Egg – visual click tracking

Crazy Egg [http://www.crazyegg.com/] is an easy to use hosted web application that visualizes
website clicks using heatmaps. It allows you to discover the areas of
web pages that are most important to your visitors.

Installation

To start using the Crazy Egg integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Crazy Egg template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Crazy Egg tracking code is inserted into templates using a template
tag. Load the crazy_egg template tag library and insert the
crazy_egg tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body:

{% load crazy_egg %}
...
{% crazy_egg %}
</body>
</html>

Configuration

Before you can use the Crazy Egg integration, you must first set your
account number. You can also segment the click analysis through user
variables.

Setting the account number

Crazy Egg gives you a unique account number, and the crazy egg
tag will include it in the rendered Javascript code. You can find your
account number by clicking the link named “What’s my code?” in the
dashboard of your Crazy Egg account. Set
CRAZY_EGG_ACCOUNT_NUMBER in the project settings.py
file:

CRAZY_EGG_ACCOUNT_NUMBER = 'XXXXXXXX'

If you do not set an account number, the tracking code will not be
rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the CRAZY_EGG_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

User variables

Crazy Egg can segment clicks based on user variables [https://www.crazyegg.com/help/Setting_Up_A_Page_to_Track/How_do_I_set_the_values_of_User_Var_1_User_Var_2_etc_in_the_confetti_and_overlay_views/]. If you want to
set a user variable, use the context variables crazy_egg_var1
through crazy_egg_var5 when you render your template:

context = RequestContext({'crazy_egg_var1': 'red',
 'crazy_egg_var2': 'male'})
return some_template.render(context)

If you use the same user variables in different views and its value can
be computed from the HTTP request, you can also set them in a context
processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list
in settings.py:

def track_admin_role(request):
 if request.user.is_staff():
 role = 'staff'
 else:
 role = 'visitor'
 return {'crazy_egg_var3': role}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

The work on Crazy Egg was made possible by Bateau Knowledge [http://www.bateauknowledge.nl/]. Thanks
go to Crazy Egg for their support with the development of this
application.

Facebook Pixel – advertising analytics

Facebook Pixel [https://developers.facebook.com/docs/facebook-pixel/] is Facebook’s tool for conversion tracking, optimisation and remarketing.

Installation

To start using the Facebook Pixel integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Facebook Pixel template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Facebook Pixel code is inserted into templates using template tags.
Because every page that you want to track must have the tag,
it is useful to add it to your base template.
At the top of the template, load the facebook_pixel template tag library.
Then insert the facebook_pixel_head tag at the bottom of the head section,
and optionally insert the facebook_pixel_body tag at the bottom of the body section:

{% load facebook_pixel %}
<html>
<head>
...
{% facebook_pixel_head %}
</head>
<body>
...
{% facebook_pixel_body %}
</body>
</html>

Note

The facebook_pixel_body tag code will only be used for browsers with JavaScript disabled.
It can be omitted if you don’t need to support them.

Configuration

Before you can use the Facebook Pixel integration,
you must first set your Pixel ID.

Setting the Pixel ID

Each Facebook Adverts account you have can have a Pixel ID,
and the facebook_pixel tags will include it in the rendered page.
You can find the Pixel ID on the “Pixels” section of your Facebook Adverts account.
Set FACEBOOK_PIXEL_ID in the project settings.py file:

FACEBOOK_PIXEL_ID = 'XXXXXXXXXX'

If you do not set a Pixel ID, the code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the FACEBOOK_PIXEL_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Gaug.es – Real-time tracking

Gaug.es [http://www.gaug.es/] is an easy way to implement real-time tracking for multiple
websites.

Installation

To start using the Gaug.es integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Gaug.es template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Gaug.es Javascript code is inserted into templates using a
template tag. Load the gauges template tag library and
insert the gauges tag. Because every page that you want to
track must have the tag, it is useful to add it to your base template.
Insert the tag at the top of the HTML head:

{% load gauges %}
<html>
<head>
{% gauges %}
...

Configuration

Before you can use the Gaug.es integration, you must first set your
site id.

Setting the site id

Gaug.es gives you a unique site id, and the gauges
tag will include it in the rendered Javascript code. You can find your
site id by clicking the Tracking Code link when logged into
the on the gaug.es website. A page will display containing
HTML code looking like this:

<script type="text/javascript">
 var _gauges = _gauges || [];
 (function() {
 var t = document.createElement('script');
 t.type = 'text/javascript';
 t.async = true;
 t.id = 'gauges-tracker';
 t.setAttribute('data-site-id', 'XXXXXXXXXXXXXXXXXXXXXXX');
 t.src = '//secure.gaug.es/track.js';
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(t, s);
 })();
</script>

The code XXXXXXXXXXXXXXXXXXXXXXX is your site id. Set
GAUGES_SITE_ID in the project settings.py
file:

GAUGES_SITE_ID = 'XXXXXXXXXXXXXXXXXXXXXXX'

If you do not set an site id, the Javascript code will not be
rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the ANALYTICAL_INTERNAL_IPS setting
(which is INTERNAL_IPS by default,) the tracking code is
commented out. See Identifying authenticated users for important information
about detecting the visitor IP address.

Google Analytics (legacy) – traffic analysis

Google Analytics [http://www.google.com/analytics/] is the well-known web analytics service from
Google. The product is aimed more at marketers than webmasters or
technologists, supporting integration with AdWords and other e-commence
features.

Installation

To start using the Google Analytics (legacy) integration, you must have installed
the django-analytical package and have added the analytical
application to INSTALLED_APPS in your project
settings.py file. See Installation and configuration for details.

Next you need to add the Google Analytics template tag to your
templates. This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Google Analytics tracking code is inserted into templates using a
template tag. Load the google_analytics template tag library and
insert the google_analytics tag. Because every page that you
want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML head:

{% load google_analytics %}
<html>
<head>
...
{% google_analytics %}
</head>
...

Configuration

Before you can use the Google Analytics integration, you must first set
your website property ID. If you track multiple domains with the same
code, you also need to set-up the domain. Finally, you can add custom
segments for Google Analytics to track.

Setting the property ID

Every website you track with Google Analytics gets its own property ID,
and the google_analytics tag will include it in the rendered
Javascript code. You can find the web property ID on the overview page
of your account. Set GOOGLE_ANALYTICS_PROPERTY_ID in the
project settings.py file:

GOOGLE_ANALYTICS_PROPERTY_ID = 'UA-XXXXXX-X'

If you do not set a property ID, the tracking code will not be rendered.

Tracking multiple domains

The default code is suitable for tracking a single domain. If you track
multiple domains, set the GOOGLE_ANALYTICS_TRACKING_STYLE
setting to one of the analytical.templatetags.google_analytics.TRACK_*
constants:

	Constant

	Value

	Description

	TRACK_SINGLE_DOMAIN

	1

	Track one domain.

	TRACK_MULTIPLE_SUBDOMAINS

	2

	Track multiple subdomains of the same top
domain (e.g. fr.example.com and
nl.example.com).

	TRACK_MULTIPLE_DOMAINS

	3

	Track multiple top domains (e.g. example.fr
and example.nl).

As noted, the default tracking style is
TRACK_SINGLE_DOMAIN.

When you track multiple (sub)domains, django-analytical needs to know
what domain name to pass to Google Analytics. If you use the contrib
sites app, the domain is automatically picked up from the current
Site instance. Otherwise, you may
either pass the domain to the template tag through the context variable
google_analytics_domain (fallback: analytical_domain)
or set it in the project settings.py file using
GOOGLE_ANALYTICS_DOMAIN (fallback: ANALYTICAL_DOMAIN).

Display Advertising

Display Advertising allows you to view Demographics and Interests reports,
add Remarketing Lists and support DoubleClick Campain Manager integration.

You can enable Display Advertising features [https://support.google.com/analytics/answer/3450482] by setting the
GOOGLE_ANALYTICS_DISPLAY_ADVERTISING configuration setting:

GOOGLE_ANALYTICS_DISPLAY_ADVERTISING = True

By default, display advertising features are disabled.

Tracking site speed

You can view page load times in the Site Speed report [https://support.google.com/analytics/answer/1205784] by setting the
GOOGLE_ANALYTICS_SITE_SPEED configuration setting:

GOOGLE_ANALYTICS_SITE_SPEED = True

By default, page load times are not tracked.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the GOOGLE_ANALYTICS_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Custom variables

As described in the Google Analytics custom variables [http://code.google.com/apis/analytics/docs/tracking/gaTrackingCustomVariables.html] documentation
page, you can define custom segments. Using template context variables
google_analytics_var1 through google_analytics_var5, you can let
the google_analytics tag pass custom variables to Google
Analytics automatically. You can set the context variables in your view
when your render a template containing the tracking code:

context = RequestContext({'google_analytics_var1': ('gender', 'female'),
 'google_analytics_var2': ('visit', '1', SCOPE_SESSION)})
return some_template.render(context)

The value of the context variable is a tuple (name, value, [scope]).
The scope parameter is one of the
analytical.templatetags.google_analytics.SCOPE_* constants:

	Constant

	Value

	Description

	SCOPE_VISITOR

	1

	Distinguishes categories of visitors across
multiple sessions.

	SCOPE_SESSION

	2

	Distinguishes different visitor experiences
across sessions.

	SCOPE_PAGE

	3

	Defines page-level activity.

The default scope is SCOPE_PAGE.

You may want to set custom variables in a context processor that you add
to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def google_analytics_segment_language(request):
 try:
 return {'google_analytics_var3': request.LANGUAGE_CODE}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Anonymize IPs

You can enable the IP anonymization [https://support.google.com/analytics/bin/answer.py?hl=en&answer=2763052] feature by setting the
GOOGLE_ANALYTICS_ANONYMIZE_IP configuration setting:

GOOGLE_ANALYTICS_ANONYMIZE_IP = True

This may be mandatory for deployments in countries that have a firm policies
concerning data privacy (e.g. Germany).

By default, IPs are not anonymized.

Sample Rate

You can configure the Sample Rate [https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsamplerate] feature by setting the
GOOGLE_ANALYTICS_SAMPLE_RATE configuration setting:

GOOGLE_ANALYTICS_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or
decimal value of with up to two decimal places.

Site Speed Sample Rate

You can configure the Site Speed Sample Rate [https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsitespeedsamplerate] feature by setting the
GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE configuration setting:

GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or
decimal value of with up to two decimal places.

Session Cookie Timeout

You can configure the Session Cookie Timeout [https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsessioncookietimeout] feature by setting the
GOOGLE_ANALYTICS_SESSION_COOKIE_TIMEOUT configuration setting:

GOOGLE_ANALYTICS_SESSION_COOKIE_TIMEOUT = 3600000

The value is the session cookie timeout in milliseconds or 0 to delete the cookie when the browser is closed.

Visitor Cookie Timeout

You can configure the Visitor Cookie Timeout [https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setvisitorcookietimeout] feature by setting the
GOOGLE_ANALYTICS_VISITOR_COOKIE_TIMEOUT configuration setting:

GOOGLE_ANALYTICS_VISITOR_COOKIE_TIMEOUT = 3600000

The value is the visitor cookie timeout in milliseconds or 0 to delete the cookie when the browser is closed.

Google Analytics (gtag.js) – traffic analysis

Google Analytics [http://www.google.com/analytics/] is the well-known web analytics service from
Google. The product is aimed more at marketers than webmasters or
technologists, supporting integration with AdWords and other e-commence
features. The global site tag (gtag.js [https://developers.google.com/analytics/devguides/collection/gtagjs/]) is a JavaScript tagging
framework and API that allows you to send event data to Google Analytics,
Google Ads, and Google Marketing Platform.

Installation

To start using the Google Analytics integration, you must have installed
the django-analytical package and have added the analytical
application to INSTALLED_APPS in your project
settings.py file. See Installation and configuration for details.

Next you need to add the Google Analytics template tag to your
templates. This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Google Analytics tracking code is inserted into templates using a
template tag. Load the google_analytics_gtag template tag library and
insert the google_analytics_gtag tag. Because every page that you
want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML head:

{% load google_analytics_gtag %}
<html>
<head>
{% google_analytics_gtag %}
...
</head>
...

Configuration

Before you can use the Google Analytics integration, you must first set
your website property ID. If you track multiple domains with the same
code, you also need to set-up the domain. Finally, you can add custom
segments for Google Analytics to track.

Setting the property ID

Every website you track with Google Analytics gets its own property ID,
and the google_analytics_gtag tag will include it in the rendered
Javascript code. You can find the web property ID on the overview page
of your account. Set GOOGLE_ANALYTICS_GTAG_PROPERTY_ID in the
project settings.py file:

GOOGLE_ANALYTICS_GTAG_PROPERTY_ID = 'UA-XXXXXX-X'

If you do not set a property ID, the tracking code will not be rendered.

Please note that the accepted Property IDs should be one of the following formats:

	‘UA-XXXXXX-Y’

	‘AW-XXXXXXXXXX’

	‘G-XXXXXXXX’

	‘DC-XXXXXXXX’

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the GOOGLE_ANALYTICS_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Identifying authenticated users

The username of an authenticated user is passed to Google Analytics
automatically as the user_id. See Identifying authenticated users.

Google Analytics (analytics.js) – traffic analysis

Google Analytics [http://www.google.com/analytics/] is the well-known web analytics service from
Google. The product is aimed more at marketers than webmasters or
technologists, supporting integration with AdWords and other e-commence
features. The analytics.js [https://developers.google.com/analytics/devguides/collection/analyticsjs/] library (also known as “the Google
Analytics tag”) is a JavaScript library for measuring how users interact
with your website.

Installation

To start using the Google Analytics integration, you must have installed
the django-analytical package and have added the analytical
application to INSTALLED_APPS in your project
settings.py file. See Installation and configuration for details.

Next you need to add the Google Analytics template tag to your
templates. This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Google Analytics tracking code is inserted into templates using a
template tag. Load the google_analytics_js template tag library and
insert the google_analytics_js tag. Because every page that you
want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML head:

{% load google_analytics_js %}
<html>
<head>
...
{% google_analytics_js %}
</head>
...

Configuration

Before you can use the Google Analytics integration, you must first set
your website property ID. If you track multiple domains with the same
code, you also need to set-up the domain. Finally, you can add custom
segments for Google Analytics to track.

Setting the property ID

Every website you track with Google Analytics gets its own property ID,
and the google_analytics_js tag will include it in the rendered
Javascript code. You can find the web property ID on the overview page
of your account. Set GOOGLE_ANALYTICS_JS_PROPERTY_ID in the
project settings.py file:

GOOGLE_ANALYTICS_JS_PROPERTY_ID = 'UA-XXXXXXXX-X'

If you do not set a property ID, the tracking code will not be rendered.

Tracking multiple domains

The default code is suitable for tracking a single domain. If you track
multiple domains, set the GOOGLE_ANALYTICS_TRACKING_STYLE
setting to one of the analytical.templatetags.google_analytics_js.TRACK_*
constants:

	Constant

	Value

	Description

	TRACK_SINGLE_DOMAIN

	1

	Track one domain.

	TRACK_MULTIPLE_SUBDOMAINS

	2

	Track multiple subdomains of the same top
domain (e.g. fr.example.com and
nl.example.com).

	TRACK_MULTIPLE_DOMAINS

	3

	Track multiple top domains (e.g. example.fr
and example.nl).

As noted, the default tracking style is
TRACK_SINGLE_DOMAIN.

When you track multiple (sub)domains, django-analytical needs to know
what domain name to pass to Google Analytics. If you use the contrib
sites app, the domain is automatically picked up from the current
Site instance. Otherwise, you may
either pass the domain to the template tag through the context variable
google_analytics_domain (fallback: analytical_domain)
or set it in the project settings.py file using
GOOGLE_ANALYTICS_DOMAIN (fallback: ANALYTICAL_DOMAIN).

Display Advertising

Display Advertising allows you to view Demographics and Interests reports,
add Remarketing Lists and support DoubleClick Campain Manager integration.

You can enable Display Advertising features [https://support.google.com/analytics/answer/3450482] by setting the
GOOGLE_ANALYTICS_DISPLAY_ADVERTISING configuration setting:

GOOGLE_ANALYTICS_DISPLAY_ADVERTISING = True

By default, display advertising features are disabled.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the GOOGLE_ANALYTICS_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Custom variables

As described in the Google Analytics custom variables [https://developers.google.com/analytics/devguides/collection/upgrade/reference/gajs-analyticsjs#custom-vars] documentation
page, you can define custom segments. Using template context variables
google_analytics_var1 through google_analytics_var5, you can let
the google_analytics_js tag pass custom variables to Google
Analytics automatically. You can set the context variables in your view
when your render a template containing the tracking code:

context = RequestContext({'google_analytics_var1': ('gender', 'female'),
 'google_analytics_var2': ('visit', 1)})
return some_template.render(context)

The value of the context variable is a tuple (name, value).

You may want to set custom variables in a context processor that you add
to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def google_analytics_segment_language(request):
 try:
 return {'google_analytics_var3': request.LANGUAGE_CODE}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Anonymize IPs

You can enable the IP anonymization [https://support.google.com/analytics/bin/answer.py?hl=en&answer=2763052] feature by setting the
GOOGLE_ANALYTICS_ANONYMIZE_IP configuration setting:

GOOGLE_ANALYTICS_ANONYMIZE_IP = True

This may be mandatory for deployments in countries that have a firm policies
concerning data privacy (e.g. Germany).

By default, IPs are not anonymized.

Sample Rate

You can configure the Sample Rate [https://developers.google.com/analytics/devguides/collection/analyticsjs/field-reference#sampleRate] feature by setting the
GOOGLE_ANALYTICS_SAMPLE_RATE configuration setting:

GOOGLE_ANALYTICS_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or
integer value.

Site Speed Sample Rate

You can configure the Site Speed Sample Rate [https://developers.google.com/analytics/devguides/collection/analyticsjs/field-reference#siteSpeedSampleRate] feature by setting the
GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE configuration setting:

GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or
integer value.

Cookie Expiration

You can configure the Cookie Expiration [https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsessioncookietimeout] feature by setting the
GOOGLE_ANALYTICS_COOKIE_EXPIRATION configuration setting:

GOOGLE_ANALYTICS_COOKIE_EXPIRATION = 3600000

The value is the cookie expiration in seconds or 0 to delete the cookie when the browser is closed.

GoSquared – traffic monitoring

GoSquared [http://www.gosquared.com/] provides both real-time traffic monitoring and and trends.
It tells you what is currently happening at your website, what is
popular, locate and identify visitors and track twitter.

Installation

To start using the GoSquared integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the GoSquared template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The GoSquared tracking code is inserted into templates using a template
tag. Load the gosquared template tag library and insert the
gosquared tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body:

{% load gosquared %}
...
{% gosquared %}
</body>
</html>

Configuration

When you set up a website to be tracked by GoSquared, it assigns the
site a token. You can find the token on the Tracking Code tab of your
website settings page. Set GOSQUARED_SITE_TOKEN in the project
settings.py file:

GOSQUARED_SITE_TOKEN = 'XXX-XXXXXX-X'

If you do not set a site token, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the GOSQUARED_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Identifying authenticated users

If your websites identifies visitors, you can pass this information on
to GoSquared to display on the LiveStats dashboard. By default, the
name of an authenticated user is passed to GoSquared automatically. See
Identifying authenticated users.

You can also send the visitor identity yourself by adding either the
gosquared_identity or the analytical_identity variable to
the template context. If both variables are set, the former takes
precedence. For example:

context = RequestContext({'gosquared_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
 try:
 return {'gosquared_identity': request.user.username}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Thanks go to GoSquared for their support with the development of this
application.

Heap – analytics and events tracking

Heap [https://heap.io/] automatically captures all user interactions on your site, from the moment of installation forward.

Installation

To start using the Heap integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Configuration

Before you can use the Heap integration, you must first get your
Heap Tracker ID. If you don’t have a Heap account yet,
sign up [https://heap.io/] to get your Tracker ID.

Setting the Tracker ID

Heap gives you a unique ID. You can find this ID on the Projects page
of your Heap account. Set HEAP_TRACKER_ID in the project
settings.py file:

HEAP_TRACKER_ID = 'XXXXXXXX'

If you do not set an Tracker ID, the tracking code will not be
rendered.

The tracking code will be added just before the closing head tag.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the ANALYTICAL_INTERNAL_IPS setting
(which is INTERNAL_IPS by default,) the tracking code is
commented out. See Identifying authenticated users for important information
about detecting the visitor IP address.

Hotjar – analytics and user feedback

Hotjar [https://www.hotjar.com/] is a website analytics and user feedback tool.

Installation

To start using the Hotjar integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Hotjar template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Hotjar code is inserted into templates using template tags.
Because every page that you want to track must have the tag,
it is useful to add it to your base template.
At the top of the template, load the hotjar template tag library.
Then insert the hotjar tag at the bottom of the head section:

{% load hotjar %}
<html>
<head>
...
{% hotjar %}
</head>
...
</html>

Configuration

Before you can use the Hotjar integration, you must first set your Site ID.

Setting the Hotjar Site ID

You can find the Hotjar Site ID in the “Sites & Organizations” section of your Hotjar account.
Set HOTJAR_SITE_ID in the project settings.py file:

HOTJAR_SITE_ID = 'XXXXXXXXX'

If you do not set a Hotjar Site ID, the code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the HOTJAR_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

HubSpot – inbound marketing

HubSpot [http://www.hubspot.com/] helps you get found by customers. It provides tools for
content creation, conversion and marketing analysis. HubSpot uses
tracking on your website to measure effect of your marketing efforts.

Installation

To start using the HubSpot integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the HubSpot template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The HubSpot tracking code is inserted into templates using a template
tag. Load the hubspot template tag library and insert the
hubspot tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body:

{% load hubspot %}
...
{% hubspot %}
</body>
</html>

Configuration

Before you can use the HubSpot integration, you must first set your
portal ID, also known as your Hub ID.

Setting the portal ID

Your HubSpot account has its own portal ID, the hubspot tag
will include them in the rendered JavaScript code. You can find the
portal ID by accessing your dashboard. Alternatively, read this
Quick Answer page [http://help.hubspot.com/articles/KCS_Article/Where-can-I-find-my-HUB-ID].
Set HUBSPOT_PORTAL_ID in the project settings.py file:

HUBSPOT_PORTAL_ID = 'XXXX'

If you do not set the portal ID, the tracking code will not be rendered.

Deprecated since version 0.18.0: HUBSPOT_DOMAIN is no longer required.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the HUBSPOT_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Intercom.io – Real-time tracking

Intercom.io [http://www.intercom.io/] is an easy way to implement real-chat and individual
support for a website

Installation

To start using the Intercom.io integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Intercom.io template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Intercom.io Javascript code is inserted into templates using a
template tag. Load the intercom template tag library and
insert the intercom tag. Because every page that you want to
track must have the tag, it is useful to add it to your base template.
Insert the tag at the bottom of the HTML body:

{% load intercom %}
<html>
<head></head>
<body>
<!-- Your page -->
{% intercom %}
</body>
</html>
...

Configuration

Before you can use the Intercom.io integration, you must first set your
app id.

Setting the app id

Intercom.io gives you a unique app id, and the intercom
tag will include it in the rendered Javascript code. You can find your
app id by clicking the Tracking Code link when logged into
the on the intercom.io website. A page will display containing
HTML code looking like this:

<script id="IntercomSettingsScriptTag">
 window.intercomSettings = { name: "Jill Doe", email: "jill@example.com", created_at: 1234567890, app_id: "XXXXXXXXXXXXXXXXXXXXXXX" };
</script>
<script>(function(){var w=window;var ic=w.Intercom;if(typeof ic==="function"){ic('reattach_activator');ic('update',intercomSettings);}else{var d=document;var i=function(){i.c(arguments)};i.q=[];i.c=function(args){i.q.push(args)};w.Intercom=i;function l(){var s=d.createElement('script');s.type='text/javascript';s.async=true;s.src='https://static.intercomcdn.com/intercom.v1.js';var x=d.getElementsByTagName('script')[0];x.parentNode.insertBefore(s,x);}if(w.attachEvent){w.attachEvent('onload',l);}else{w.addEventListener('load',l,false);}}})()</script>

The code XXXXXXXXXXXXXXXXXXXXXXX is your app id. Set
INTERCOM_APP_ID in the project settings.py
file:

INTERCOM_APP_ID = 'XXXXXXXXXXXXXXXXXXXXXXX'

If you do not set an app id, the Javascript code will not be
rendered.

Custom data

As described in the Intercom documentation on custom visitor data [https://www.intercom.com/help/configure-intercom-for-your-product-or-site/customize-intercom-to-be-about-your-users/send-custom-user-attributes-to-intercom],
the data that is tracked by Intercom can be customized. Using template
context variables, you can let the intercom tag pass custom data
to Intercom automatically. You can set the context variables in your view
when your render a template containing the tracking code:

context = RequestContext({'intercom_cart_value': cart.total_price})
return some_template.render(context)

For some data, it is annoying to do this for every view, so you may want
to set variables in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

from django.utils.hashcompat import md5_constructor as md5

GRAVATAR_URL = 'http://www.gravatar.com/avatar/'

def intercom_custom_data(request):
 try:
 email = request.user.email
 except AttributeError:
 return {}
 email_hash = md5(email).hexdigest()
 avatar_url = "%s%s" % (GRAVATAR_URL, email_hash)
 return {'intercom_avatar': avatar_url}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Standard variables that will be displayed in the Intercom live visitor
data are listed in the table below, but you can define any intercom_*
variable you like and have that detail passed from within the visitor
live stream data when viewing Intercom.

	Context variable

	Description

	intercom_name

	The visitor’s full name.

	intercom_email

	The visitor’s email address.

	intercom_user_id

	The visitor’s user id.

	created_at

	The date the visitor created an account

Identifying authenticated users

If you have not set the intercom_name, intercom_email, or intercom_user_id variables
explicitly, the username and email address of an authenticated user are
passed to Intercom automatically. See Identifying authenticated users.

Verifying identified users

Intercom supports HMAC authentication of users identified by user ID or email, in order to prevent impersonation.
For more information, see Enable identity verification on your web product [https://www.intercom.com/help/configure-intercom-for-your-product-or-site/staying-secure/enable-identity-verification-on-your-web-product] in the Intercom documentation.

To enable this, configure your Intercom account’s HMAC secret key:

INTERCOM_HMAC_SECRET_KEY = 'XXXXXXXXXXXXXXXXXXXXXXX'

(You can find this secret key under the “Identity verification” section of your Intercom account settings page.)

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the ANALYTICAL_INTERNAL_IPS setting
(which is INTERNAL_IPS by default,) the tracking code is
commented out. See Identifying authenticated users for important information
about detecting the visitor IP address.

KISSinsights – feedback surveys

KISSinsights [http://www.kissinsights.com/] provides unobtrusive surveys that pop up from the bottom
right-hand corner of your website. Asking specific questions gets you
the targeted, actionable feedback you need to make your site better.

Installation

To start using the KISSinsights integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the KISSinsights template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The KISSinsights survey code is inserted into templates using a template
tag. Load the kiss_insights template tag library and insert the
kiss_insights tag. Because every page that you want to track
must have the tag, it is useful to add it to your base template. Insert
the tag at the top of the HTML body:

{% load kiss_insights %}
...
</head>
<body>
{% kiss_insights %}
...

Configuration

Before you can use the KISSinsights integration, you must first set your
account number and site code.

Setting the account number and site code

In order to install the survey code, you need to set your KISSinsights
account number and website code. The kiss_insights tag will
include it in the rendered Javascript code. You can find the account
number and website code by visiting the code installation page of the
website you want to place the surveys on. You will see some HTML code
with a Javascript tag with a src attribute containing
//s3.amazonaws.com/ki.js/XXXXX/YYY.js. Here XXXXX is the
account number and YYY the website code. Set
KISS_INSIGHTS_ACCOUNT_NUMBER and
KISS_INSIGHTS_WEBSITE_CODE in the project settings.py
file:

KISSINSIGHTS_ACCOUNT_NUMBER = 'XXXXX'
KISSINSIGHTS_SITE_CODE = 'XXX'

If you do not set the account number and website code, the survey code
will not be rendered.

Identifying authenticated users

If your websites identifies visitors, you can pass this information on
to KISSinsights so that you can tie survey submissions to customers.
By default, the username of an authenticated user is passed to
KISSinsights automatically. See Identifying authenticated users.

You can also send the visitor identity yourself by adding either the
kiss_insights_identity or the analytical_identity variable to
the template context. If both variables are set, the former takes
precedence. For example:

context = RequestContext({'kiss_insights_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
 try:
 return {'kiss_insights_identity': request.user.email}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Showing a specific survey

KISSinsights can also be told to show a specific survey. You can let
the kiss_insights tag include the code to select a survey by
passing the survey ID to the template in the
kiss_insights_show_survey context variable:

context = RequestContext({'kiss_insights_show_survey': 1234})
return some_template.render(context)

For information about how to find the survey ID, see the explanation
on “How can I show a survey after a custom trigger condition?” [http://www.kissinsights.com/help#customer-trigger] on the
KISSinsights help page.

KISSmetrics – funnel analysis

KISSmetrics [http://www.kissmetrics.com/] is an easy to implement analytics solution that provides a
powerful visual representation of your customer lifecycle. Discover how
many visitors go from your landing page to pricing to sign up, and how
many drop out at each stage.

Installation

To start using the KISSmetrics integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the KISSmetrics template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The KISSmetrics Javascript code is inserted into templates using a
template tag. Load the kiss_metrics template tag library and
insert the kiss_metrics tag. Because every page that you want
to track must have the tag, it is useful to add it to your base
template. Insert the tag at the top of the HTML head:

{% load kiss_metrics %}
<html>
<head>
{% kiss_metrics %}
...

Configuration

Before you can use the KISSmetrics integration, you must first set your
API key.

Setting the API key

Every website you track events for with KISSmetrics gets its own API
key, and the kiss_metrics tag will include it in the rendered
Javascript code. You can find the website API key by visiting the
website Product center on your KISSmetrics dashboard. Set
KISS_METRICS_API_KEY in the project settings.py file:

KISS_METRICS_API_KEY = 'XX'

If you do not set an API key, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the KISS_METRICS_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Identifying users

If your websites identifies visitors, you can pass this information on
to KISSmetrics so that you can tie events to users. By default, the
username of an authenticated user is passed to KISSmetrics
automatically. See Identifying authenticated users.

You can also send the visitor identity yourself by adding either the
kiss_metrics_identity or the analytical_identity variable to the
template context. If both variables are set, the former takes
precedence. For example:

context = RequestContext({'kiss_metrics_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
 try:
 return {'kiss_metrics_identity': request.user.email}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Alias

Alias is used to associate one identity with another.
This most likely will occur if a user is not signed in yet,
you assign them an anonymous identity and record activity for them
and they later sign in and you get a named identity.

For example:

context = RequestContext({
 'kiss_metrics_alias': {'my_registered@email' : 'my_user_id'},
})
return some_template.render(context)

The output script tag will then include the corresponding properties as
documented in the KISSmetrics alias API [http://support.kissmetrics.com/apis/common-methods#alias] docs.

Recording events

You may tell KISSmetrics about an event by setting a variable in the context.

For example:

context = RequestContext({
 'kiss_metrics_event': ['Signed Up', {'Plan' : 'Pro', 'Amount' : 9.99}],
})
return some_template.render(context)

The output script tag will then include the corresponding Javascript event as
documented in the KISSmetrics record API [http://support.kissmetrics.com/apis/common-methods#set] docs.

Recording properties

You may also set KISSmetrics properties without a corresponding event.

For example:

context = RequestContext({
 'kiss_metrics_properties': {'gender': 'Male'},
})
return some_template.render(context)

The output script tag will then include the corresponding properties as
documented in the KISSmetrics set API [http://support.kissmetrics.com/apis/common-methods#record] docs.

Lucky Orange – All-in-one conversion optimization

Lucky Orange [https://www.luckyorange.com/] is a website analytics and user feedback tool.

Installation

To start using the Lucky Orange integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Lucky Orange template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Lucky Orange tracking code is inserted into templates using template
tags. Because every page that you want to track must have the tag, it
is useful to add it to your base template. At the top of the template,
load the luckyorange template tag library. Then insert the
luckyorange tag at the bottom of the head section:

{% load luckyorange %}
<html>
<head>
...
{% luckyorange %}
</head>
...
</html>

Configuration

Before you can use the Lucky Orange integration, you must first set your
Site ID.

Setting the Lucky Orange Site ID

You can find the Lucky Orange Site ID in the “Settings” of your Lucky
Orange account, reachable via the gear icon on the top right corner.
Set LUCKYORANGE_SITE_ID in the project settings.py file:

LUCKYORANGE_SITE_ID = 'XXXXXX'

If you do not set a Lucky Orange Site ID, the code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the LUCKYORANGE_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Matomo (formerly Piwik) – open source web analytics

Matomo [http://matomo.org/] is an open analytics platform currently used by individuals,
companies and governments all over the world.

Installation

To start using the Matomo integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Matomo template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Matomo tracking code is inserted into templates using a template
tag. Load the matomo template tag library and insert the
matomo tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body as recommended by the
Matomo best practice for Integration Plugins [http://matomo.org/integrate/how-to/]:

{% load matomo %}
...
{% matomo %}
</body>
</html>

Configuration

Before you can use the Matomo integration, you must first define
domain name and optional URI path to your Matomo server, as well as
the Matomo ID of the website you’re tracking with your Matomo server,
in your project settings.

Setting the domain

Your Django project needs to know where your Matomo server is located.
Typically, you’ll have Matomo installed on a subdomain of its own
(e.g. matomo.example.com), otherwise it runs in a subdirectory of
a website of yours (e.g. www.example.com/matomo). Set
MATOMO_DOMAIN_PATH in the project settings.py file
accordingly:

MATOMO_DOMAIN_PATH = 'matomo.example.com'

If you do not set a domain the tracking code will not be rendered.

Setting the site ID

Your Matomo server can track several websites. Each website has its
site ID (this is the idSite parameter in the query string of your
browser’s address bar when you visit the Matomo Dashboard). Set
MATOMO_SITE_ID in the project settings.py file to
the value corresponding to the website you’re tracking:

MATOMO_SITE_ID = '4'

If you do not set the site ID the tracking code will not be rendered.

User variables

Matomo supports sending custom variables [http://developer.matomo.org/guides/tracking-javascript-guide#custom-variables] along with default statistics. If
you want to set a custom variable, use the context variable matomo_vars when
you render your template. It should be an iterable of custom variables
represented by tuples like: (index, name, value[, scope]), where scope may
be 'page' (default) or 'visit'. index should be an integer and the
other parameters should be strings.

context = Context({
 'matomo_vars': [(1, 'foo', 'Sir Lancelot of Camelot'),
 (2, 'bar', 'To seek the Holy Grail', 'page'),
 (3, 'spam', 'Blue', 'visit')]
})
return some_template.render(context)

Matomo default settings allow up to 5 custom variables for both scope. Variable
mapping between index and name must stay constant, or the latest name
override the previous one.

If you use the same user variables in different views and its value can
be computed from the HTTP request, you can also set them in a context
processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list
in settings.py.

User tracking

If you use the standard Django authentication system, you can allow Matomo to
track individual users [http://developer.matomo.org/guides/tracking-javascript-guide#user-id] by setting the ANALYTICAL_AUTO_IDENTIFY
setting to True. This is enabled by default. Matomo will identify
users based on their username.

If you disable this settings, or want to customize what user id to use, you can
set the context variable analytical_identity (for global configuration) or
matomo_identity (for Matomo specific configuration). Setting one to
None will disable the user tracking feature:

Matomo will identify this user as 'BDFL' if ANALYTICAL_AUTO_IDENTIFY is True or unset
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')

Matomo will identify this user as 'Guido van Rossum'
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({
 'matomo_identity': request.user.get_full_name()
})

Matomo will not identify this user (but will still collect statistics)
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({
 'matomo_identity': None
})

Disabling cookies

If you want to disable cookies [https://matomo.org/faq/general/faq_157/], set MATOMO_DISABLE_COOKIES to
True. This is disabled by default.

Internal IP addresses

Usually, you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the ANALYTICAL_INTERNAL_IPS (which
takes the value of INTERNAL_IPS by default) the tracking code
is commented out. See Identifying authenticated users for important
information about detecting the visitor IP address.

Mixpanel – event tracking

Mixpanel [http://www.mixpanel.com/] tracks events and actions to see what features users are using
the most and how they are trending. You could use it for real-time
analysis of visitor retention or funnels.

Installation

To start using the Mixpanel integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Mixpanel template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Mixpanel Javascript code is inserted into templates using a
template tag. Load the mixpanel template tag library and
insert the mixpanel tag. Because every page that you want
to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML head:

{% load mixpanel %}
...
{% mixpanel %}
</head>
<body>
...

Configuration

Before you can use the Mixpanel integration, you must first set your
token.

Setting the token

Every website you track events for with Mixpanel gets its own token,
and the mixpanel tag will include it in the rendered Javascript
code. You can find the project token on the Mixpanel projects page.
Set MIXPANEL_API_TOKEN in the project settings.py
file:

MIXPANEL_API_TOKEN = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

If you do not set a token, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the MIXPANEL_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Identifying users

If your websites identifies visitors, you can pass this information on
to Mixpanel so that you can tie events to users. By default, the
username of an authenticated user is passed to Mixpanel automatically.
See Identifying authenticated users.

You can also send the visitor identity yourself by adding either the
mixpanel_identity or the analytical_identity variable to the
template context. If both variables are set, the former takes
precedence. For example:

context = RequestContext({'mixpanel_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
 try:
 return {'mixpanel_identity': request.user.email}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Mixpanel can also receive properties for your identified user, using
mixpanel.people.set [https://mixpanel.com/help/reference/javascript-full-api-reference#mixpanel.people.set]. If want to send extra properties, just set a
dictionary instead of a string in the mixpanel_identity context
variable. The key id or username will be used as the user unique
id, and any other key-value pair will be passed as people properties.
For example:

def identify(request):
 try:
 return {
 'mixpanel_identity': {
 'id': request.user.id,
 'last_login': str(request.user.last_login),
 'date_joined': str(request.user.date_joined),
 }
 }
 except AttributeError:
 return {}

Tracking events

The django-analytical app integrates the Mixpanel Javascript API in
templates. To tracking events in views or other parts of Django, you
can use Wes Winham’s mixpanel-celery [http://github.com/winhamwr/mixpanel-celery] package.

If you want to track an event in Javascript, use the asynchronous
notation, as described in the section titled
“Asynchronous Tracking with Javascript” [http://mixpanel.com/api/docs/guides/integration/js#async] in the Mixpanel
documentation. For example:

mixpanel.track("play-game", {"level": "12", "weapon": "sword", "character": "knight"});

Olark – visitor chat

Olark [http://www.olark.com/] is a lightweight tool to chat with visitors to your website using
your existing instant messaging client. Chat with your website visitors
while they browse, using your mobile device or instant messenger. Olark
is fully customizable, supports multiple operators and keeps chat
transcripts.

Installation

To start using the Olark integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Olark template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Olark Javascript code is inserted into templates using a template
tag. Load the olark template tag library and insert the
olark tag. Because every page that you want to track
must have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body:

{% load olark %}
...
{% olark %}
</body>
</html>

Configuration

Before you can use the Olark integration, you must first set your site
ID. You can customize the visitor nickname and add information to their
status in the operator buddy list, and customize the text used in the
chat window.

Setting the site ID

In order to install the chat code, you need to set your Olark site ID.
The olark tag will include it in the rendered Javascript code.
You can find the site ID on installation page [https://www.olark.com/install] of you Olark account.
Set OLARK_SITE_ID in the project settings.py file:

OLARK_SITE_ID = 'XXXX-XXX-XX-XXXX'

If you do not set the site ID, the chat window will not be rendered.

Setting the visitor nickname

If your website identifies visitors, you can use that to set their
nickname in the operator buddy list. By default, the name and username
of an authenticated user are automatically used to set the nickname.
See Identifying authenticated users.

You can also set the visitor nickname yourself by adding either the
olark_nickname (alias: olark_identity) or the
analytical_identity variable to the template context. If both
variables are set, the former takes precedence. For example:

context = RequestContext({'olark_nickname': nick})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def set_olark_nickname(request):
 try:
 return {'olark_nickname': request.user.email}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

See also api.chat.updateVisitorNickname [http://www.olark.com/documentation/javascript/api.chat.updateVisitorNickname] in the Olark Javascript API
documentation.

Adding status information

If you want to send more information about the visitor to the operators,
you can add text snippets to the status field in the buddy list. Set
the olark_status context variable to a string or a list of strings
and the olark tag will pass them to Olark as status messages:

context = RequestContext({'olark_status': [
 'has %d items in cart' % cart.item_count,
 'value of items is $%0.2f' % cart.total_value,
]})
return some_template.render(context)

See also api.chat.updateVisitorStatus [http://www.olark.com/documentation/javascript/api.chat.updateVisitorStatus] in the Olark Javascript API
documentation.

Customizing the chat window messages

Olark lets you customize the appearance of the Chat window by changing
location, colors and messages text. While you can configure these on
the Olark website, sometimes one set of messages is not enough. For
example, if you want to localize your website, you want to address every
visitor in their own language. Olark allows you to set the messages on
a per-page basis, and the olark tag supports this feature by way
of the following context variables:

	Context variable

	Example message

	olark_welcome_title

	Click to Chat

	olark_chatting_title

	Live Help: Now Chatting

	olark_unavailable_title

	Live Help: Offline

	olark_busy_title

	Live Help: Busy

	olark_away_message

	Our live support feature is
currently offline, Please
try again later.

	olark_loading_title

	Loading Olark…

	olark_welcome_message

	Welcome to my website. You
can use this chat window to
chat with me.

	olark_busy_message

	All of our representatives
are with other customers at
this time. We will be with
you shortly.

	olark_chat_input_text

	Type here and hit to chat

	olark_name_input_text

	and type your Name

	olark_email_input_text

	and type your Email

	olark_offline_note_message

	We are offline, send us a
message

	olark_send_button_text

	Send

	olark_offline_note_thankyou_text

	Thank you for your message.
We will get back to you as
soon as we can.

	olark_offline_note_error_text

	You must complete all fields
and specify a valid email
address

	olark_offline_note_sending_text

	Sending…

	olark_operator_is_typing_text

	is typing…

	olark_operator_has_stopped_typing_text

	has stopped typing

	olark_introduction_error_text

	Please leave a name and email
address so we can contact you
in case we get disconnected

	olark_introduction_messages

	Welcome, just fill out some
brief information and click
‘Start chat’ to talk to us

	olark_introduction_submit_button_text

	Start chat

As an example, you could set the texts site-wide base on the current
language using a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

OLARK_TEXTS = {
 'en': {
 'welcome title': "Click for Live Help",
 'chatting_title': "Live Help: Now chatting",
 ...
 },
 'nl': {
 'welcome title': "Klik voor online hulp",
 'chatting_title': "Online hulp: in gesprek",
 ...
 },
 ...
}

def set_olark_texts(request):
 lang = request.LANGUAGE_CODE.split('-', 1)[0]
 texts = OLARK_TEXTS.get(lang)
 if texts is None:
 texts = OLARK_TEXTS.get('en')
 return dict(('olark_%s' % k, v) for k, v in texts.items())

See also the Olark blog post on supporting multiple languages [http://www.olark.com/blog/2010/olark-in-your-favorite-language/].

Thanks go to Olark for their support with the development of this
application.

Optimizely – A/B testing

Optimizely [http://www.optimizely.com/] is an easy way to implement A/B testing. Try different
decisions, images, layouts, and copy without touching your website code
and see exactly how your experiments are affecting pageviews,
retention and sales.

Installation

To start using the Optimizely integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Optimizely template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Optimizely Javascript code is inserted into templates using a
template tag. Load the optimizely template tag library and
insert the optimizely tag. Because every page that you want to
track must have the tag, it is useful to add it to your base template.
Insert the tag at the top of the HTML head:

{% load optimizely %}
<html>
<head>
{% optimizely %}
...

Configuration

Before you can use the Optimizely integration, you must first set your
account number.

Setting the account number

Optimizely gives you a unique account number, and the optimizely
tag will include it in the rendered Javascript code. You can find your
account number by clicking the Implementation link in the top
right-hand corner of the Optimizely website. A pop-up window will
appear containing HTML code looking like this:

<script src="//cdn.optimizely.com/js/XXXXXXX.js"></script>

The number XXXXXXX is your account number. Set
OPTIMIZELY_ACCOUNT_NUMBER in the project settings.py
file:

OPTIMIZELY_ACCOUNT_NUMBER = 'XXXXXXX'

If you do not set an account number, the Javascript code will not be
rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the OPTIMIZELY_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Performable – web analytics and landing pages

Performable [http://www.performable.com/] provides a platform for inbound marketing, landing pages
and web analytics. Its analytics module tracks individual customer
interaction, funnel and e-commerce analysis. Landing pages can be
created and designed on-line, and integrated with you existing website.

Installation

To start using the Performable integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Performable template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Performable Javascript code is inserted into templates using a
template tag. Load the performable template tag library and
insert the performable tag. Because every page that you want to
track must have the tag, it is useful to add it to your base template.
Insert the tag at the bottom of the HTML body:

{% load performable %}
...
{% performable %}
</body>
</html>

Configuration

Before you can use the Performable integration, you must first set your
API key.

Setting the API key

You Performable account has its own API key, which performable
tag will include it in the rendered Javascript code. You can find your
API key on the Account Settings page (click ‘Account Settings’ in the
top right-hand corner of your Performable dashboard). Set
PERFORMABLE_API_KEY in the project settings.py file:

PERFORMABLE_API_KEY = 'XXXXXX'

If you do not set an API key, the Javascript code will not be rendered.

Identifying authenticated users

If your websites identifies visitors, you can pass this information on
to Performable so that you can track individual users. By default, the
username of an authenticated user is passed to Performable
automatically. See Identifying authenticated users.

You can also send the visitor identity yourself by adding either the
performable_identity or the analytical_identity variable to
the template context. If both variables are set, the former takes
precedence. For example:

context = RequestContext({'performable_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
 try:
 return {'performable_identity': request.user.email}
 except AttributeError:
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the PERFORMABLE_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Embedding a landing page

You can embed a Performable landing page in your Django website. The
performable_embed template tag adds the Javascript code to embed
the page. It takes two arguments: the hostname and the page ID:

{% performable_embed HOSTNAME PAGE_ID %}

To find the hostname and page ID, select Manage ‣
Manage Landing Pages on your Performable dashboard. Select the landing
page you want to embed. Look at the URL in your browser address bar; it
will look like this:

http://my.performable.com/s/HOSTNAME/page/PAGE_ID/

(If you are placing the hostname and page id values in the template, do
not forget to enclose them in quotes or they will be considered context
variable names.)

Thanks go to Performable for their support with the development of this
application.

Piwik (deprecated) – open source web analytics

Piwik [http://www.piwik.org/] is an open analytics platform currently used by individuals,
companies and governments all over the world. With Piwik, your data
will always be yours, because you run your own analytics server.

Deprecated

Note that Piwik is now known as Matomo. New projects should use the
Matomo integration. The Piwik integration in django-analytical is
deprecated and eventually will be removed.

Installation

To start using the Piwik integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Piwik template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Piwik tracking code is inserted into templates using a template
tag. Load the piwik template tag library and insert the
piwik tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML body as recommended by the
Piwik best practice for Integration Plugins [http://piwik.org/integrate/how-to/]:

{% load piwik %}
...
{% piwik %}
</body>
</html>

Configuration

Before you can use the Piwik integration, you must first define
domain name and optional URI path to your Piwik server, as well as
the Piwik ID of the website you’re tracking with your Piwik server,
in your project settings.

Setting the domain

Your Django project needs to know where your Piwik server is located.
Typically, you’ll have Piwik installed on a subdomain of its own
(e.g. piwik.example.com), otherwise it runs in a subdirectory of
a website of yours (e.g. www.example.com/piwik). Set
PIWIK_DOMAIN_PATH in the project settings.py file
accordingly:

PIWIK_DOMAIN_PATH = 'piwik.example.com'

If you do not set a domain the tracking code will not be rendered.

Setting the site ID

Your Piwik server can track several websites. Each website has its
site ID (this is the idSite parameter in the query string of your
browser’s address bar when you visit the Piwik Dashboard). Set
PIWIK_SITE_ID in the project settings.py file to
the value corresponding to the website you’re tracking:

PIWIK_SITE_ID = '4'

If you do not set the site ID the tracking code will not be rendered.

User variables

Piwik supports sending custom variables [http://developer.piwik.org/guides/tracking-javascript-guide#custom-variables] along with default statistics. If
you want to set a custom variable, use the context variable piwik_vars when
you render your template. It should be an iterable of custom variables
represented by tuples like: (index, name, value[, scope]), where scope may
be 'page' (default) or 'visit'. index should be an integer and the
other parameters should be strings.

context = Context({
 'piwik_vars': [(1, 'foo', 'Sir Lancelot of Camelot'),
 (2, 'bar', 'To seek the Holy Grail', 'page'),
 (3, 'spam', 'Blue', 'visit')]
})
return some_template.render(context)

Piwik default settings allow up to 5 custom variables for both scope. Variable
mapping between index and name must stay constant, or the latest name
override the previous one.

If you use the same user variables in different views and its value can
be computed from the HTTP request, you can also set them in a context
processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list
in settings.py.

User tracking

If you use the standard Django authentication system, you can allow Piwik to
track individual users [http://developer.piwik.org/guides/tracking-javascript-guide#user-id] by setting the ANALYTICAL_AUTO_IDENTIFY
setting to True. This is enabled by default. Piwik will identify
users based on their username.

If you disable this settings, or want to customize what user id to use, you can
set the context variable analytical_identity (for global configuration) or
piwik_identity (for Piwik specific configuration). Setting one to
None will disable the user tracking feature:

Piwik will identify this user as 'BDFL' if ANALYTICAL_AUTO_IDENTIFY is True or unset
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')

Piwik will identify this user as 'Guido van Rossum'
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({
 'piwik_identity': request.user.get_full_name()
})

Piwik will not identify this user (but will still collect statistics)
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({
 'piwik_identity': None
})

Disabling cookies

If you want to disable cookies [https://matomo.org/faq/general/faq_157/], set PIWIKI_DISABLE_COOKIES to
True. This is disabled by default.

Internal IP addresses

Usually, you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the ANALYTICAL_INTERNAL_IPS (which
takes the value of INTERNAL_IPS by default) the tracking code
is commented out. See Identifying authenticated users for important
information about detecting the visitor IP address.

Thanks go to Piwik for providing an excellent web analytics platform
entirely for free! Consider donating [http://piwik.org/donate/] to ensure that they continue
their development efforts in the spirit of open source and freedom
for our personal data.

Rating@Mail.ru – traffic analysis

Rating@Mail.ru [http://top.mail.ru/] is an analytics tool like as google analytics.

Installation

To start using the Rating@Mail.ru integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Rating@Mail.ru template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Rating@Mail.ru counter code is inserted into templates using a template
tag. Load the rating_mailru template tag library and insert the
rating_mailru tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML head:

{% load rating_mailru %}
<html>
<head>
...
{% rating_mailru %}
</head>
...

Configuration

Before you can use the Rating@Mail.ru integration, you must first set
your website counter ID.

Setting the counter ID

Every website you track with Rating@Mail.ru gets its own counter ID,
and the rating_mailru tag will include it in the rendered
Javascript code. You can find the web counter ID on the overview page
of your account. Set RATING_MAILRU_COUNTER_ID in the
project settings.py file:

RATING_MAILRU_COUNTER_ID = '1234567'

If you do not set a counter ID, the counter code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the RATING_MAILRU_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

SnapEngage – live chat

SnapEngage [http://www.snapengage.com/] is a live chat widget for your site which integrates with your
existing chat client. It integrates with many online applications and even
allows you to make a remote screenshot of the webpage. SnapEngage can be
customized to fit your website look and feel, offers reports and statistics and
is available in many languages.

Installation

To start using the SnapEngage integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the SnapEngage template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The SnapEngage Javascript code is inserted into templates using a
template tag. Load the SnapEngage template tag library and
insert the SnapEngage tag. Because every page that you want to
track must have the tag, it is useful to add it to your base template.
Insert the tag at the bottom of the HTML body:

{% load snapengage %}
...
{% snapengage %}
</body>
</html>

Configuration

Before you can use the SnapEngage integration, you must first set the
widget ID. You can customize the visitor nickname and add information
to their status in the operator buddy list, and customize the text used
in the chat window.

Setting the widget ID

In order to install the chat code, you need to set the ID of the
SnapEngage widget. You can find the site ID on the Your Widget ID
page [https://secure.snapengage.com/getwidgetid] of your SnapEngage account. Set SNAPENGAGE_WIDGET_ID in
the project settings.py file:

SNAPENGAGE_WIDGET_ID = 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'

If you do not set the widget ID, the chat window will not be rendered.

Customizing the widget

The SnapEngage widget can be customized in various ways using either
context variables or settings. More information about controlling the
widget can be found on the customization FAQ section [http://www.snapengage.com/faq#customization] of the
SnapEngage website.

	Setting

	Context variable

	Description

	SNAPENGAGE_DOMAIN

	snapengage_domain

	Manually set the domain name to follow users across subdomains.

	SNAPENGAGE_SECURE_CONNECTION

	snapengage_secure_connection

	Force the use of SSL for the chat connection, even on unencrypted
pages. (Default: False)

	SNAPENGAGE_BUTTON_EFFECT

	snapengage_button_effect

	An effect applied when the mouse hovers over the button.
(Example: "-4px")

	SNAPENGAGE_BUTTON_STYLE

	snapengage_button_style

	What the chat button should look like. Use any of the
BUTTON_STYLE_* constants, or a URL to a custom button
image.

	SNAPENGAGE_BUTTON_LOCATION

	snapengage_button_location

	The location of the chat button. Use any of the
BUTTON_LOCATION_* constants.

	SNAPENGAGE_BUTTON_LOCATION_OFFSET

	snapengage_button_location_offset

	The offset of the button from the top or left side of the page.
(Default: "55%")

	SNAPENGAGE_FORM_POSITION

	snapengage_form_position

	Configure the location of the chat window. Use any of the
FORM_POSITION_* constants.

	SNAPENGAGE_FORM_TOP_POSITION

	snapengage_form_top_position

	The chat window offset in pixels from the top of the page.

	SNAPENGAGE_READONLY_EMAIL

	snapengage_readonly_email

	Whether a preset e-mail address can be changed by the visitor.
(Default: False)

	SNAPENGAGE_SHOW_OFFLINE

	snapengage_show_offline

	Whether to show the chat button when all operators are offline.
(Default: True)

	SNAPENGAGE_SCREENSHOTS

	snapengage_screenshots

	Whether to allow the user to take a screenshot.
(Default: True)

	SNAPENGAGE_OFFLINE_SCREENSHOTS

	snapengage_offline_screenshots

	Whether to allow the user to take a screenshot when all operators
are offline. (Default: True)

	SNAPENGAGE_SOUNDS

	snapengage_sounds

	Whether to play chat sound notifications. (Default: True)

There are also two customizations that can only be used with context
variables.

	Context variable

	Description

	snapengage_proactive_chat

	Set to False to disable proactive
chat, for example for users who are
already converted.

	snapengage_email

	Set the e-mail address of the website
visitor. (See Setting the visitor e-mail address)

Setting the visitor e-mail address

If your website identifies visitors, you can use that to pass their e-mail
address to the support agent. By default, the e-mail address of an
authenticated user is automatically used. See Identifying authenticated users.

You can also set the visitor e-mail address yourself by adding either the
snapengage_email (alias: snapengage_identity) or the
analytical_identity variable to the template context. If both
variables are set, the former takes precedence. For example:

context = RequestContext({'snapengage_email': email})
return some_template.render(context)

If you can derive the e-mail address from the HTTP request, you can also use
a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

from django.core.exceptions import ObjectDoesNotExist

def set_snapengage_email(request):
 try:
 profile = request.user.get_profile()
 return {'snapengage_email': profile.business_email}
 except (AttributeError, ObjectDoesNotExist):
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

If the user should not be able to edit the pre-set e-mail address, you
can set either the snapengage_readonly_email context variable or the
SNAPENGAGE_READONLY_EMAIL setting to True.

Thanks go to SnapEngage for their support with the development of this
application.

Spring Metrics – conversion tracking

Spring Metrics [http://www.springmetrics.com/] is a convesions analysis tool. It shows you the top
converting sources, search keywords and landing pages. The real-time
dashboard shows you how customers interact with your website and how
to increase conversion.

Installation

To start using the Spring Metrics integration, you must have installed
the django-analytical package and have added the analytical
application to INSTALLED_APPS in your project
settings.py file. See Installation and configuration for details.

Next you need to add the Spring Metrics template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Spring Metrics tracking code is inserted into templates using a
template tag. Load the spring_metrics template tag library and
insert the spring_metrics tag. Because every page that you
want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML head:

{% load spring_metrics %}
<html>
<head>
...
{% spring_metrics %}
</head>
...

Configuration

Before you can use the Spring Metrics integration, you must first set
your website Tracking ID and tag a page for conversion. You can also
customize the data that Spring Metrics tracks.

Setting the Tracking ID

Every website you track with Spring Metrics gets its own Tracking ID,
and the spring_metrics tag will include it in the rendered
Javascript code. You can find the Tracking ID in the Site Settings [https://app.springmetrics.com/manage]
of your Spring Metrics account. Set SPRING_METRICS_TRACKING_ID
in the project settings.py file:

SPRING_METRICS_TRACKING_ID = 'XXXXXXXXXX'

If you do not set a Tracking ID, the tracking code will not be rendered.

Tagging conversion

In order to make use of Spring Metrics, you must tell it when visitors
become customers. This is called conversion. Usually, it marked by
the client requesting a specific page, such as the “thank you” page
of a webshop checkout. You tag these pages in the Site Settings [https://app.springmetrics.com/manage]
of your Spring Metrics account.

Alternatively, you can mark conversion pages using the
spring_metrics_convert template context variable:

context = RequestContext({'spring_metrics_convert': 'mailinglist signup'})
return some_template.render(context)

Tracking revenue

Spring Metrics allows you to track the value of conversions. Using the
spring_metrics_revenue template context variable, you can let
the spring_metrics tag pass earned revenue to Spring Metrics.
You can set the context variable in your view when you render a
template containing the tracking code:

context = RequestContext({
 'spring_metrics_convert': 'sale',
 'spring_metrics_revenue': '30.53',
})
return some_template.render(context)

(You would not need to use the spring_metrics_convert variable
if you already tagged the page in Spring Metrics.)

Custom data

Spring Metrics can also track other data. Interesting examples could be
transaction IDs or the e-mail addresses from logged in users. By
setting any spring_metrics_X template context variable, Spring
Metrics will track a variable named X. For example:

context = RequestContext({
 'spring_metrics_revenue': '30.53',
 'spring_metrics_order_id': '15445',
})
return some_template.render(context)

Some variables should be passed on every page and can be computed from
the request object. In such cases you will want to set custom
variables in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def spring_metrics_global_variables(request):
 try:
 profile = request.user.get_profile()
 return {'spring_metrics_city': profile.address.city}
 except (AttributeError, ObjectDoesNotExist):
 return {}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Identifying authenticated users

If you have not set the spring_metrics_email property
explicitly, the e-mail address of an authenticated user is passed to
Spring Metrics automatically. See Identifying authenticated users.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the SPRING_METRICS_INTERNAL_IPS
setting, the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Thanks go to Spring Metrics for their support with the development of
this application.

UserVoice – user feedback and helpdesk

UserVoice [http://www.uservoice.com/] makes it simple for your customers to give, discuss, and vote
for feedback. An unobtrusive feedback tab allows visitors to easily
submit and discuss ideas without having to sign up for a new account.
The best ideas are delivered to you based on customer votes.

Installation

To start using the UserVoice integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the UserVoice template tag to your templates.
This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The UserVoice Javascript code is inserted into templates using a
template tag. Load the uservoice template tag library and insert
the uservoice tag. Because every page that you want to have
the feedback tab to appear on must have the tag, it is useful to add
it to your base template. Insert the tag at the bottom of the HTML
body:

{% load uservoice %}
...
{% uservoice %}
</body>
</html>

Configuration

Before you can use the UserVoice integration, you must first set the
widget key.

Setting the widget key

In order to use the feedback widget, you need to configure which widget
you want to show. You can find the widget keys in the Channels tab on
your UserVoice Settings page. Under the Javascript Widget heading,
find the Javascript embed code of the widget. The widget key is the
alphanumerical string contained in the URL of the script imported by the
embed code:

<script type="text/javascript">

 UserVoice=window.UserVoice||[];(function(){
 var uv=document.createElement('script');uv.type='text/javascript';
 uv.async=true;uv.src='//widget.uservoice.com/XXXXXXXXXXXXXXXXXXXX.js';
 var s=document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(uv,s)})();
</script>

(The widget key is shown as XXXXXXXXXXXXXXXXXXXX.)

The default widget

Often you will use the same widget throughout your website. The default
widget key is configured by setting USERVOICE_WIDGET_KEY in
the project settings.py file:

USERVOICE_WIDGET_KEY = 'XXXXXXXXXXXXXXXXXXXX'

If the setting is present but empty, no widget is shown by default. This
is useful if you want to set a widget using a template context variable,
as the setting must be present for the generic analytical.* tags
to work.

Widget options

You can set USERVOICE_WIDGET_OPTIONS to customize your widget
with UserVoice’s options.

Tip

See the JS SDK Overview [https://developer.uservoice.com/docs/widgets/overview/] and the reference [https://developer.uservoice.com/docs/widgets/options/] for the details of available options.

For example, to override the default icon style with a tab and on the left,
you could define:

USERVOICE_WIDGET_OPTIONS = {"trigger_position": "left",
 "trigger_style": "tab"}

Per-view widget

The widget configuration can be overriden in a view using
uservoice_widget_options template context variable. For example:

context = RequestContext({'uservoice_widget_options': 'mode': 'satisfaction'})
return some_template.render(context)

It’s also possible to set a different widget key for a particular view
with uservoice_widget_key:

context = RequestContext({'uservoice_widget_key': 'XXXXXXXXXXXXXXXXXXXX'})
return some_template.render(context)

These variable passed in the context overrides the default
widget configuration.

Using a custom link

Instead of showing the default feedback icon or tab, you can make the UserVoice
widget launch when a visitor clicks a link or when some other event
occurs. As the documentation describe [https://developer.uservoice.com/docs/widgets/methods/#custom-trigger], simply add the data-uv-trigger HTML attribute to the element. For example:

Contact us

In order to hidden the default trigger, you should disable it putting
uservoice_add_trigger to False:

context = RequestContext({'uservoice_add_trigger': False})
return your_template_with_custom_uservoice_link.render(context)

If you want to disable the automatic trigger globally, set in settings.py:

USERVOICE_ADD_TRIGGER = False

Setting the widget key in a context processor

You can also set the widget keys in a context processor that you add to
the TEMPLATE_CONTEXT_PROCESSORS list in settings.py.
For example, to show a specific widget to logged in users:

def uservoice_widget_key(request):
 try:
 if request.user.is_authenticated():
 return {'uservoice_widget_key': 'XXXXXXXXXXXXXXXXXXXX'}
 except AttributeError:
 pass
 return {}

The widget key passed in the context variable overrides both the default
and the per-view widget key.

Identifying users

If your websites identifies visitors, you can pass this information on
to Uservoice. By default, the name and email of an authenticated user
is passed to Uservoice automatically. See Identifying authenticated users.

You can also send the visitor identity yourself by adding either the
uservoice_identity or the analytical_identity variable to
the template context. (If both are set, the former takes precedence.)
This should be a dictionary with the desired user traits as its keys.
Check the documentation on identifying users [https://developer.uservoice.com/docs/widgets/identify/] to see valid traits.
For example:

context = RequestContext({'uservoice_identity': {'email': user_email,
 'name': username }})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use
a context processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
 try:
 return {'uservoice_identity': {
 email: request.user.username,
 name: request.user.get_full_name(),
 id: request.user.id,
 type: 'vip',
 account: {
 name: 'Acme, Co.',
 monthly_rate: 9.99,
 ltv: 1495.00,
 plan: 'Enhanced'
 }
 }
 }
 except AttributeError:
 return {}

Thanks go to UserVoice for their support with the development of this
application.

Woopra – website analytics

Woopra [http://www.woopra.com/] generates live detailed statistics about the visitors to your
website. You can watch your visitors navigate live and interact with
them via chat. The service features notifications, campaigns, funnels
and more.

Installation

To start using the Woopra integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Woopra template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Woopra tracking code is inserted into templates using a template
tag. Load the woopra template tag library and insert the
woopra tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML head:

{% load woopra %}
<html>
<head>
...
{% woopra %}
</head>
...

Because Javascript code is asynchronous, putting the tag in the head
section increases the chances that a page view is going to be tracked
before the visitor leaves the page. See for details the Asynchronous
JavaScript Developer’s Guide [http://www.woopra.com/docs/async/] on the Woopra website.

Configuration

Before you can use the Woopra integration, you must first set the
website domain. You can also customize the data that Woopra tracks and
identify authenticated users.

Setting the domain

A Woopra account is tied to a website domain. Set
WOOPRA_DOMAIN in the project settings.py file:

WOOPRA_DOMAIN = 'XXXXXXXX.XXX'

If you do not set a domain, the tracking code will not be rendered.

(In theory, the django-analytical application could get the website
domain from the current Site or the request object, but this
setting also works as a sign that the Woopra integration should be
enabled for the analytical.* template tags.)

Visitor timeout

The default Woopra visitor timeout – the time after which Woopra
ignores inactive visitors on a website – is set at 4 minutes. This
means that if a user opens your Web page and then leaves it open in
another browser window, Woopra will report that the visitor has gone
away after 4 minutes of inactivity on that page (no page scrolling,
clicking or other action).

If you would like to increase or decrease the idle timeout setting you
can set WOOPRA_IDLE_TIMEOUT to a time in milliseconds. For
example, to set the default timout to 10 minutes:

WOOPRA_IDLE_TIMEOUT = 10 * 60 * 1000

Keep in mind that increasing this number will not only show you more
visitors on your site at a time, but will also skew your average time on
a page reporting. So it’s important to keep the number reasonable in
order to accurately make predictions.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the WOOPRA_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Custom data

As described in the Woopra documentation on custom visitor data [http://www.woopra.com/docs/tracking/custom-visitor-data/],
the data that is tracked by Woopra can be customized. Using template
context variables, you can let the woopra tag pass custom data
to Woopra automatically. You can set the context variables in your view
when your render a template containing the tracking code:

context = RequestContext({'woopra_cart_value': cart.total_price})
return some_template.render(context)

For some data, it is annoying to do this for every view, so you may want
to set variables in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

from django.utils.hashcompat import md5_constructor as md5

GRAVATAR_URL = 'http://www.gravatar.com/avatar/'

def woopra_custom_data(request):
 try:
 email = request.user.email
 except AttributeError:
 return {}
 email_hash = md5(email).hexdigest()
 avatar_url = "%s%s" % (GRAVATAR_URL, email_hash)
 return {'woopra_avatar': avatar_url}

Just remember that if you set the same context variable in the
RequestContext constructor and in a
context processor, the latter clobbers the former.

Standard variables that will be displayed in the Woopra live visitor
data are listed in the table below, but you can define any woopra_*
variable you like and have that detail passed from within the visitor
live stream data when viewing Woopra.

	Context variable

	Description

	woopra_name

	The visitor’s full name.

	woopra_email

	The visitor’s email address.

	woopra_avatar

	A URL link to a visitor avatar.

Identifying authenticated users

If you have not set the woopra_name or woopra_email variables
explicitly, the username and email address of an authenticated user are
passed to Woopra automatically. See Identifying authenticated users.

Thanks go to Woopra for their support with the development of this
application.

Yandex.Metrica – traffic analysis

Yandex.Metrica [http://metrica.yandex.com/] is an analytics tool like as google analytics.

Installation

To start using the Yandex.Metrica integration, you must have installed the
django-analytical package and have added the analytical application
to INSTALLED_APPS in your project settings.py file.
See Installation and configuration for details.

Next you need to add the Yandex.Metrica template tag to your templates. This
step is only needed if you are not using the generic
analytical.* tags. If you are, skip to
Configuration.

The Yandex.Metrica counter code is inserted into templates using a template
tag. Load the yandex_metrica template tag library and insert the
yandex_metrica tag. Because every page that you want to track must
have the tag, it is useful to add it to your base template. Insert
the tag at the bottom of the HTML head:

{% load yandex_metrica %}
<html>
<head>
...
{% yandex_metrica %}
</head>
...

Configuration

Before you can use the Yandex.Metrica integration, you must first set
your website counter ID.

Setting the counter ID

Every website you track with Yandex.Metrica gets its own counter ID,
and the yandex_metrica tag will include it in the rendered
Javascript code. You can find the web counter ID on the overview page
of your account. Set YANDEX_METRICA_COUNTER_ID in the
project settings.py file:

YANDEX_METRICA_COUNTER_ID = '12345678'

If you do not set a counter ID, the counter code will not be rendered.

You can set additional options to tune your counter:

	Constant

	Default Value

	Description

	YANDEX_METRICA_WEBVISOR

	False

	Webvisor, scroll map, form analysis.

	YANDEX_METRICA_TRACKHASH

	False

	Hash tracking in the browser address bar.

	YANDEX_METRICA_NOINDEX

	False

	Stop automatic page indexing.

	YANDEX_METRICA_ECOMMERCE

	False

	Dispatch ecommerce data to Metrica.

Internal IP addresses

Usually you do not want to track clicks from your development or
internal IP addresses. By default, if the tags detect that the client
comes from any address in the YANDEX_METRICA_INTERNAL_IPS setting,
the tracking code is commented out. It takes the value of
ANALYTICAL_INTERNAL_IPS by default (which in turn is
INTERNAL_IPS by default). See Identifying authenticated users for
important information about detecting the visitor IP address.

Settings

Here’s a full list of all available settings, in alphabetical order, and
their default values.

	
ANALYTICAL_AUTO_IDENTIFY

	Default: True

Automatically identify logged in users by their username. See
Identifying authenticated users.

	
ANALYTICAL_INTERNAL_IPS

	Default: INTERNAL_IPS

A list or tuple of internal IP addresses. Tracking code will be
commented out for visitors from any of these addresses. You can
configure this setting for each service individually by substituting
ANALYTICAL for the upper-case service name. For example, set
GOOGLE_ANALYTICS_INTERNAL_IPS to configure for Google Analytics.

See Internal IP addresses.

History and credits

Changelog

The project follows the Semantic Versioning [http://semver.org/] specification for its
version numbers. Patch-level increments indicate bug fixes, minor
version increments indicate new functionality and major version
increments indicate backwards incompatible changes.

Version 1.0.0 is the last to support Django < 1.7. Users of older Django
versions should stick to 1.0.0, and are encouraged to upgrade their setups.
Starting with 2.0.0, dropping support for obsolete Django versions is not
considered to be a backward-incompatible change.

Version 3.1.0

	Rename default branch from master to main (Peter Bittner, Jannis Leidel)

	Modernize packaging setup, add pyproject.toml (Peter Bittner)

	Integrate isort, reorganize imports (David Smith)

	Refactor test suite from Python unit tests to Pytest (David Smith)

	Add Heap integration (Garrett Coakley)

	Drop Django 3.1, cover Django 4.0 and Python 3.10 in test suite (David Smith)

Version 3.0.0

	Add support for Lucky Orange (Peter Bittner)

	Add missing instructions in Installation chapter of the docs (Peter Bittner)

	Migrate test setup to Pytest (David Smith, Peter Bittner, Pi Delport)

	Support Django 3.1 and Python 3.9, drop Django 1.11 and Python 2.7/3.5 (David Smith)

	Migrate from Travis CI to GitHub Actions (Jannis Leidel)

	Update accepted patterns (regex) for Google Analytics GTag (Taha Rushain)

	Scope Piwik warning to use of Piwik (Hugo Barrera)

	Add user_id to Google Analytics GTag (Sean Wallace)

Version 2.6.0

	Support Django 3.0 and Python 3.8, drop Django 2.1

	Add support for Google Analytics Tag Manager (Marc Bourqui)

	Add Matomo, the renamed version of Piwik (Scott Karlin)

	Move Joost’s project over to the Jazzband

Version 2.5.0

	Add support for Google analytics.js (Marc Bourqui)

	Add support for Intercom HMAC identity verification (Pi Delport)

	Add support for Hotjar (Pi Delport)

	Make sure _trackPageview happens before other settings in Google Analytics
(Diederik van der Boor)

Version 2.4.0

	Support Django 2.0 (Matthäus G. Chajdas)

Version 2.3.0

	Add Facebook Pixel support (Pi Delport)

	Add Python 3.6 and Django 1.10 & 1.11 tests (Pi Delport)

	Drop Python 3.2 support

Version 2.2.2

	Allow port in Piwik domain path. (Alex Ramsay)

Version 2.2.1

	Fix a bug with the extra Google Analytics variables also pushing the _gat.
flag onto the configuration array.

Version 2.2.0

	Update Woopra JavaScript snippet (Aleck Landgraf)

Version 2.1.0

	Support Rating@mail.ru (Nikolay Korotkiy)

	Support Yandex.Metrica (Nikolay Korotkiy)

	Add support for extra Google Analytics variables (Steve Schwarz)

	Remove support for Reinvigorate (service shut down)

Version 2.0.0

	Support Django 1.9, drop support for Django < 1.7 (Hugo Osvaldo Barrera)

	Support custom user models with an alternative username field (Brad Pitcher)

Version 1.0.0

	Add Piwik user variables support (Alexandre Pocquet)

Version 0.22.0

	Mark package as Python 3 compatible (Martín Gaitán)

	Fix Clickmap tracker id regular expression

	Test with Django 1.8

Version 0.21.0

	Added compatibility with Python 3 (Eric Amador)

Version 0.20.0

	Support Django 1.7 (Craig Bruce)

	Update Mixpanel identity code (Martín Gaitán)

	Identify authenticated users in Uservoice (Martín Gaitán)

	Add full name and email to Olark (Scott Adams)

Version 0.19.0

	Add Piwik integration (Peter Bittner)

Version 0.18.0

	Update HubSpot code (Craig Bruce)

Version 0.17.1

	Fix typo in Intercom.io support (Steven Skoczen)

Version 0.17.0

	Update UserVoice support (Martín Gaitán)

	Add support for Intercom.io (Steven Skoczen)

Version 0.16.0

	Add support for GA Display Advertising features (Max Arnold)

Version 0.15.0

	Add IP anonymization setting to GA tracking pixel (Tinnet Coronam)

	Include Django 1.5 in tox.ini (Tinnet Coronam)

	Add Clickmap integration (Philippe O. Wagner)

Version 0.14.0

	Update mixpanel integration to latest code (Simon Ye)

Version 0.13.0

	Add support for the KISSmetrics alias feature (Sandra Mau)

	Update testing code for Django 1.4 (Pi Delport)

Version 0.12.0

	Add support for the UserVoice service.

Version 0.11.3

	Added support for Gaug.es (Steven Skoczen)

Version 0.11.2

	Fix Spring Metrics custom variables.

	Update Spring Metrics documentation.

Version 0.11.1

	Fix Woopra for anonymous users (Steven Skoczen).

Version 0.11.0

	Added support for the Spring Metrics service.

	Allow sending events and properties to KISSmetrics (Paul Oswald).

	Add support for the Site Speed report in Google Analytics (Uros
Trebec).

Version 0.10.0

	Added multiple domains support for Google Analytics.

	Fixed bug in deleted settings testing code (Eric Davis).

Version 0.9.2

	Added support for the SnapEngage service.

	Updated Mixpanel code (Julien Grenier).

Version 0.9.1

	Fixed compatibility with Python 2.5 (Iván Raskovsky).

Version 0.9.0

	Updated Clicky tracking code to support multiple site ids.

	Fixed Chartbeat auto-domain bug when the Sites framework is not used
(Eric Davis).

	Improved testing code (Eric Davis).

Version 0.8.1

	Fixed MANIFEST bug that caused GoSquared support to be missing from
the source distribution.

Version 0.8.0

	Added support for the GoSquared service.

	Updated Clicky tracking code to use relative URLs.

Version 0.7.0

	Added support for the Woopra service.

	Added chat window text customization to Olark.

	Renamed MIXPANEL_TOKEN setting to MIXPANEL_API_TOKEN for
compatibility with Wes Winham’s mixpanel-celery [https://github.com/winhamwr/mixpanel-celery] package.

	Fixed the <script> tag for Crazy Egg.

Version 0.6.0

	Added support for the Reinvigorate service.

	Added support for the Olark service.

Version 0.5.0

	Split off Geckoboard support into django-geckoboard [http://pypi.python.org/pypi/django-geckoboard].

Version 0.4.0

	Added support for the Geckoboard service.

Version 0.3.0

	Added support for the Performable service.

Version 0.2.0

	Added support for the HubSpot service.

	Added template tags for individual services.

Version 0.1.0

	First project release.

Credits

The django-analytical package was originally written by Joost Cassee [https://github.com/jcassee]
and is now maintained by the Jazzband community [https://jazzband.co/], with contributions
from Eric Davis [https://github.com/edavis], Paul Oswald [https://github.com/poswald], Uros Trebec [https://github.com/failedguidedog], Steven Skoczen [https://github.com/skoczen],
Pi Delport [https://github.com/pjdelport], Sandra Mau [https://github.com/xthepoet], Simon Ye [https://github.com/yesimon], Tinnet Coronam [https://github.com/tinnet],
Philippe O. Wagner, Max Arnold [https://github.com/max-arnold] , Martín Gaitán [https://github.com/mgaitan], Craig Bruce [https://github.com/craigbruce],
Peter Bittner [https://github.com/bittner], Scott Adams [https://github.com/7wonders], Eric Amador [https://github.com/amadornimbis], Alexandre Pocquet [https://github.com/apocquet],
Brad Pitcher [https://github.com/brad], Hugo Osvaldo Barrera [https://github.com/hobarrera], Nikolay Korotkiy [https://github.com/sikmir],
Steve Schwarz [https://github.com/saschwarz], Aleck Landgraf [https://github.com/alecklandgraf], Marc Bourqui [https://github.com/mbourqui],
Diederik van der Boor [https://github.com/vdboor], Matthäus G. Chajdas [https://github.com/Anteru], Scott Karlin [https://github.com/sckarlin]
and others.

Included Javascript code snippets for integration of the analytics
services were written by the respective service providers.

The application was inspired by and uses ideas from Analytical [https://github.com/jkrall/analytical], Joshua
Krall’s all-purpose analytics front-end for Rails.

The work on Crazy Egg was made possible by Bateau Knowledge [http://www.bateauknowledge.nl/].
The work on Intercom was made possible by GreenKahuna [http://www.greenkahuna.com/].

Helping out

If you want to help out with the development of django-analytical, by
posting detailed bug reports, proposing new features or other analytics
services to support, or suggesting documentation improvements, use the
issue tracker [https://github.com/jazzband/django-analytical/issues]. If you want to get your hands dirty, great! Clone
the repository, make changes and place a pull request [https://github.com/jazzband/django-analytical/pulls]. Creating an
issue to discuss your plans is useful.

This is a Jazzband [https://jazzband.co] project. By contributing you agree to abide by the
Contributor Code of Conduct [https://jazzband.co/about/conduct] and follow the guidelines [https://jazzband.co/about/guidelines].

License

The django-analytical package is distributed under the MIT License [http://en.wikipedia.org/wiki/MIT_License].
The complete license term are included below. The copyright of the
integration code snippets of individual services rest solely with the
respective service providers.

License terms

Copyright (C) 2011-2019 Joost Cassee and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Index

 A

A

 	
 	ANALYTICAL_AUTO_IDENTIFY (built-in variable)

 	
 	ANALYTICAL_INTERNAL_IPS (built-in variable)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 django-analytical

 		
 Tutorial

 		
 Setting up basic tracking

 		
 Identifying authenticated users

 		
 Adding custom tracking data

 		
 Installation and configuration

 		
 Installing the Python package

 		
 Installing the Django application

 		
 Adding the template tags to the base template

 		
 Enabling the services

 		
 Features and customization

 		
 Internal IP addresses

 		
 Identifying authenticated users

 		
 Services

 		
 Chartbeat – traffic analysis

 		
 Installation

 		
 Configuration

 		
 Clickmap – visual click tracking

 		
 Installation

 		
 Configuration

 		
 Clicky – traffic analysis

 		
 Installation

 		
 Configuration

 		
 Crazy Egg – visual click tracking

 		
 Installation

 		
 Configuration

 		
 Facebook Pixel – advertising analytics

 		
 Installation

 		
 Configuration

 		
 Gaug.es – Real-time tracking

 		
 Installation

 		
 Configuration

 		
 Google Analytics (legacy) – traffic analysis

 		
 Installation

 		
 Configuration

 		
 Google Analytics (gtag.js) – traffic analysis

 		
 Installation

 		
 Configuration

 		
 Google Analytics (analytics.js) – traffic analysis

 		
 Installation

 		
 Configuration

 		
 GoSquared – traffic monitoring

 		
 Installation

 		
 Configuration

 		
 Heap – analytics and events tracking

 		
 Installation

 		
 Configuration

 		
 Hotjar – analytics and user feedback

 		
 Installation

 		
 Configuration

 		
 HubSpot – inbound marketing

 		
 Installation

 		
 Configuration

 		
 Intercom.io – Real-time tracking

 		
 Installation

 		
 Configuration

 		
 KISSinsights – feedback surveys

 		
 Installation

 		
 Configuration

 		
 KISSmetrics – funnel analysis

 		
 Installation

 		
 Configuration

 		
 Lucky Orange – All-in-one conversion optimization

 		
 Installation

 		
 Configuration

 		
 Matomo (formerly Piwik) – open source web analytics

 		
 Installation

 		
 Configuration

 		
 Mixpanel – event tracking

 		
 Installation

 		
 Configuration

 		
 Tracking events

 		
 Olark – visitor chat

 		
 Installation

 		
 Configuration

 		
 Optimizely – A/B testing

 		
 Installation

 		
 Configuration

 		
 Performable – web analytics and landing pages

 		
 Installation

 		
 Configuration

 		
 Embedding a landing page

 		
 Piwik (deprecated) – open source web analytics

 		
 Deprecated

 		
 Installation

 		
 Configuration

 		
 Rating@Mail.ru – traffic analysis

 		
 Installation

 		
 Configuration

 		
 SnapEngage – live chat

 		
 Installation

 		
 Configuration

 		
 Spring Metrics – conversion tracking

 		
 Installation

 		
 Configuration

 		
 UserVoice – user feedback and helpdesk

 		
 Installation

 		
 Configuration

 		
 Woopra – website analytics

 		
 Installation

 		
 Configuration

 		
 Yandex.Metrica – traffic analysis

 		
 Installation

 		
 Configuration

 		
 Settings

 		
 History and credits

 		
 Changelog

 		
 Version 3.1.0

 		
 Version 3.0.0

 		
 Version 2.6.0

 		
 Version 2.5.0

 		
 Version 2.4.0

 		
 Version 2.3.0

 		
 Version 2.2.2

 		
 Version 2.2.1

 		
 Version 2.2.0

 		
 Version 2.1.0

 		
 Version 2.0.0

 		
 Version 1.0.0

 		
 Version 0.22.0

 		
 Version 0.21.0

 		
 Version 0.20.0

 		
 Version 0.19.0

 		
 Version 0.18.0

 		
 Version 0.17.1

 		
 Version 0.17.0

 		
 Version 0.16.0

 		
 Version 0.15.0

 		
 Version 0.14.0

 		
 Version 0.13.0

 		
 Version 0.12.0

 		
 Version 0.11.3

 		
 Version 0.11.2

 		
 Version 0.11.1

 		
 Version 0.11.0

 		
 Version 0.10.0

 		
 Version 0.9.2

 		
 Version 0.9.1

 		
 Version 0.9.0

 		
 Version 0.8.1

 		
 Version 0.8.0

 		
 Version 0.7.0

 		
 Version 0.6.0

 		
 Version 0.5.0

 		
 Version 0.4.0

 		
 Version 0.3.0

 		
 Version 0.2.0

 		
 Version 0.1.0

 		
 Credits

 		
 Helping out

 		
 License

 		
 License terms

_static/up-pressed.png

_static/up.png

